მთავარ კონტენტზე გადასვლა
შეფასება
Tick mark Image
დიფერენცირება x-ის მიმართ
Tick mark Image

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

\int 2x^{2}\mathrm{d}x+\int -6x\mathrm{d}x+\int 1\mathrm{d}x
მოახდინეთ ჯამური მნიშვნელობის სათითაოდ გაინტეგრალება.
2\int x^{2}\mathrm{d}x-6\int x\mathrm{d}x+\int 1\mathrm{d}x
ფრჩხილებს გარეთ გაიტანეთ მუდმივა თითოეულისთვის.
\frac{2x^{3}}{3}-6\int x\mathrm{d}x+\int 1\mathrm{d}x
რადგან\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int x^{2}\mathrm{d}x უნდა ჩაანაცვლოთ \frac{x^{3}}{3}-ით. გაამრავლეთ 2-ზე \frac{x^{3}}{3}.
\frac{2x^{3}}{3}-3x^{2}+\int 1\mathrm{d}x
რადგან\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int x\mathrm{d}x უნდა ჩაანაცვლოთ \frac{x^{2}}{2}-ით. გაამრავლეთ -6-ზე \frac{x^{2}}{2}.
\frac{2x^{3}}{3}-3x^{2}+x
იპოვეთ1-ის ინტეგრალი, ზოგადი ინტეგრალების ცხრილის გამოყენებით, წესი \int a\mathrm{d}x=ax.
\frac{2x^{3}}{3}-3x^{2}+x+С
თუF\left(x\right) წარმოადგენს f\left(x\right)-ის ანტიდერივატივს, მაშინ f\left(x\right)-ის ყველა ანტიდერივატივის მწკრივი მიღებულია F\left(x\right)+C-ით. მაშასადამე, მიღებულ შედეგს უნდა დაამატოთ ინტეგრაციის მუდმივა C\in \mathrm{R}.