მთავარ კონტენტზე გადასვლა
შეფასება
Tick mark Image
დიფერენცირება x-ის მიმართ
Tick mark Image

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

\int \frac{\left(3x-4\right)\left(x+2\right)}{x+2}\mathrm{d}x
აღრიცხეთ ყველა გამოსახულება, რომლიც ჯერ არ არის აღრიცხული \frac{3x^{2}+2x-8}{x+2}-ში.
\int 3x-4\mathrm{d}x
გააბათილეთ x+2 როგორც მრიცხველში, ასევე მნიშვნელში.
\int 3x\mathrm{d}x+\int -4\mathrm{d}x
მოახდინეთ ჯამური მნიშვნელობის სათითაოდ გაინტეგრალება.
3\int x\mathrm{d}x+\int -4\mathrm{d}x
ფრჩხილებს გარეთ გაიტანეთ მუდმივა თითოეულისთვის.
\frac{3x^{2}}{2}+\int -4\mathrm{d}x
რადგან\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int x\mathrm{d}x უნდა ჩაანაცვლოთ \frac{x^{2}}{2}-ით. გაამრავლეთ 3-ზე \frac{x^{2}}{2}.
\frac{3x^{2}}{2}-4x
იპოვეთ-4-ის ინტეგრალი, ზოგადი ინტეგრალების ცხრილის გამოყენებით, წესი \int a\mathrm{d}x=ax.
-4x+\frac{3x^{2}}{2}
გაამარტივეთ.
-4x+\frac{3x^{2}}{2}+С
თუF\left(x\right) წარმოადგენს f\left(x\right)-ის ანტიდერივატივს, მაშინ f\left(x\right)-ის ყველა ანტიდერივატივის მწკრივი მიღებულია F\left(x\right)+C-ით. მაშასადამე, მიღებულ შედეგს უნდა დაამატოთ ინტეგრაციის მუდმივა C\in \mathrm{R}.