მთავარ კონტენტზე გადასვლა
შეფასება
Tick mark Image
დიფერენცირება x-ის მიმართ
Tick mark Image

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

\frac{\int \frac{1}{\sqrt{x}}\mathrm{d}x}{2}
ფრჩხილებს გარეთ გაიტანეთ მუდმივა \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x-ის მეშვეობით.
\sqrt{x}
ხელახლა დაწერეთ \frac{1}{\sqrt{x}}, როგორც x^{-\frac{1}{2}}. რადგან\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int x^{-\frac{1}{2}}\mathrm{d}x უნდა ჩაანაცვლოთ \frac{x^{\frac{1}{2}}}{\frac{1}{2}}-ით. გაამარტივეთ და გარდაქმენით ექსპონენციური განტოლებიდან ფესვურ განტოლებაზე.
\sqrt{x}+С
თუF\left(x\right) წარმოადგენს f\left(x\right)-ის ანტიდერივატივს, მაშინ f\left(x\right)-ის ყველა ანტიდერივატივის მწკრივი მიღებულია F\left(x\right)+C-ით. მაშასადამე, მიღებულ შედეგს უნდა დაამატოთ ინტეგრაციის მუდმივა C\in \mathrm{R}.