შეფასება
\frac{13}{27}\approx 0.481481481
მამრავლი
\frac{13}{3 ^ {3}} = 0.48148148148148145
გაზიარება
კოპირებულია ბუფერში
\frac{1}{216}\left(1-3\sqrt{17}+3\left(\sqrt{17}\right)^{2}-\left(\sqrt{17}\right)^{3}\right)+\frac{1}{216}\left(1+\sqrt{17}\right)^{3}
\left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} ბინომიალური თეორემის გამოყენება \left(1-\sqrt{17}\right)^{3}-ის გასაშლელად.
\frac{1}{216}\left(1-3\sqrt{17}+3\times 17-\left(\sqrt{17}\right)^{3}\right)+\frac{1}{216}\left(1+\sqrt{17}\right)^{3}
\sqrt{17}-ის კვადრატია 17.
\frac{1}{216}\left(1-3\sqrt{17}+51-\left(\sqrt{17}\right)^{3}\right)+\frac{1}{216}\left(1+\sqrt{17}\right)^{3}
გადაამრავლეთ 3 და 17, რათა მიიღოთ 51.
\frac{1}{216}\left(52-3\sqrt{17}-\left(\sqrt{17}\right)^{3}\right)+\frac{1}{216}\left(1+\sqrt{17}\right)^{3}
შეკრიბეთ 1 და 51, რათა მიიღოთ 52.
\frac{13}{54}-\frac{1}{72}\sqrt{17}-\frac{1}{216}\left(\sqrt{17}\right)^{3}+\frac{1}{216}\left(1+\sqrt{17}\right)^{3}
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ \frac{1}{216} 52-3\sqrt{17}-\left(\sqrt{17}\right)^{3}-ზე.
\frac{13}{54}-\frac{1}{72}\sqrt{17}-\frac{1}{216}\left(\sqrt{17}\right)^{3}+\frac{1}{216}\left(1+3\sqrt{17}+3\left(\sqrt{17}\right)^{2}+\left(\sqrt{17}\right)^{3}\right)
\left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} ბინომიალური თეორემის გამოყენება \left(1+\sqrt{17}\right)^{3}-ის გასაშლელად.
\frac{13}{54}-\frac{1}{72}\sqrt{17}-\frac{1}{216}\left(\sqrt{17}\right)^{3}+\frac{1}{216}\left(1+3\sqrt{17}+3\times 17+\left(\sqrt{17}\right)^{3}\right)
\sqrt{17}-ის კვადრატია 17.
\frac{13}{54}-\frac{1}{72}\sqrt{17}-\frac{1}{216}\left(\sqrt{17}\right)^{3}+\frac{1}{216}\left(1+3\sqrt{17}+51+\left(\sqrt{17}\right)^{3}\right)
გადაამრავლეთ 3 და 17, რათა მიიღოთ 51.
\frac{13}{54}-\frac{1}{72}\sqrt{17}-\frac{1}{216}\left(\sqrt{17}\right)^{3}+\frac{1}{216}\left(52+3\sqrt{17}+\left(\sqrt{17}\right)^{3}\right)
შეკრიბეთ 1 და 51, რათა მიიღოთ 52.
\frac{13}{54}-\frac{1}{72}\sqrt{17}-\frac{1}{216}\left(\sqrt{17}\right)^{3}+\frac{13}{54}+\frac{1}{72}\sqrt{17}+\frac{1}{216}\left(\sqrt{17}\right)^{3}
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ \frac{1}{216} 52+3\sqrt{17}+\left(\sqrt{17}\right)^{3}-ზე.
\frac{13}{27}-\frac{1}{72}\sqrt{17}-\frac{1}{216}\left(\sqrt{17}\right)^{3}+\frac{1}{72}\sqrt{17}+\frac{1}{216}\left(\sqrt{17}\right)^{3}
შეკრიბეთ \frac{13}{54} და \frac{13}{54}, რათა მიიღოთ \frac{13}{27}.
\frac{13}{27}-\frac{1}{216}\left(\sqrt{17}\right)^{3}+\frac{1}{216}\left(\sqrt{17}\right)^{3}
დააჯგუფეთ -\frac{1}{72}\sqrt{17} და \frac{1}{72}\sqrt{17}, რათა მიიღოთ 0.
\frac{13}{27}
დააჯგუფეთ -\frac{1}{216}\left(\sqrt{17}\right)^{3} და \frac{1}{216}\left(\sqrt{17}\right)^{3}, რათა მიიღოთ 0.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}