ამოხსნა x-ისთვის
x=\frac{\sqrt{3}-1}{2}\approx 0.366025404
x=\frac{-\sqrt{3}-1}{2}\approx -1.366025404
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
\frac{1}{2}=x^{2}+x
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ x x+1-ზე.
x^{2}+x=\frac{1}{2}
შეუცვალეთ ადგილები ისე, რომ ყველა ცვლადი წევრები მარცხენა მხარეს აღმოჩნდეს.
x^{2}+x-\frac{1}{2}=0
გამოაკელით \frac{1}{2} ორივე მხარეს.
x=\frac{-1±\sqrt{1^{2}-4\left(-\frac{1}{2}\right)}}{2}
ეს განტოლება სტანდარტული ფორმისაა: ax^{2}+bx+c=0. ჩაანაცვლეთ 1-ით a, 1-ით b და -\frac{1}{2}-ით c კვადრატულ ფორმულაში, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-\frac{1}{2}\right)}}{2}
აიყვანეთ კვადრატში 1.
x=\frac{-1±\sqrt{1+2}}{2}
გაამრავლეთ -4-ზე -\frac{1}{2}.
x=\frac{-1±\sqrt{3}}{2}
მიუმატეთ 1 2-ს.
x=\frac{\sqrt{3}-1}{2}
ახლა ამოხსენით განტოლება x=\frac{-1±\sqrt{3}}{2} როცა ± პლიუსია. მიუმატეთ -1 \sqrt{3}-ს.
x=\frac{-\sqrt{3}-1}{2}
ახლა ამოხსენით განტოლება x=\frac{-1±\sqrt{3}}{2} როცა ± მინუსია. გამოაკელით \sqrt{3} -1-ს.
x=\frac{\sqrt{3}-1}{2} x=\frac{-\sqrt{3}-1}{2}
განტოლება ახლა ამოხსნილია.
\frac{1}{2}=x^{2}+x
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ x x+1-ზე.
x^{2}+x=\frac{1}{2}
შეუცვალეთ ადგილები ისე, რომ ყველა ცვლადი წევრები მარცხენა მხარეს აღმოჩნდეს.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\frac{1}{2}+\left(\frac{1}{2}\right)^{2}
გაყავით 1, x წევრის კოეფიციენტი, 2-ზე, \frac{1}{2}-ის მისაღებად. შემდეგ დაამატეთ \frac{1}{2}-ის კვადრატი განტოლების ორივე მხარეს. ამის შედეგად განტოლების მარცხენა მხარე სრული კვადრატი გახდება.
x^{2}+x+\frac{1}{4}=\frac{1}{2}+\frac{1}{4}
აიყვანეთ კვადრატში \frac{1}{2} მამრავლის მრიცხველის და მნიშვნელის კვადრატში აყვანის გზით.
x^{2}+x+\frac{1}{4}=\frac{3}{4}
მიუმატეთ \frac{1}{2} \frac{1}{4}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების შეკრების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
\left(x+\frac{1}{2}\right)^{2}=\frac{3}{4}
დაშალეთ მამრავლებად x^{2}+x+\frac{1}{4}. ზოგადად, როცა x^{2}+bx+c სრული კვადრატია, ყოველთვის შესაძლებელია მისი დაშლა, როგორც \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{3}{4}}
აიღეთ განტოლების ორივე მხარის კვადრატული ფესვი.
x+\frac{1}{2}=\frac{\sqrt{3}}{2} x+\frac{1}{2}=-\frac{\sqrt{3}}{2}
გაამარტივეთ.
x=\frac{\sqrt{3}-1}{2} x=\frac{-\sqrt{3}-1}{2}
გამოაკელით \frac{1}{2} განტოლების ორივე მხარეს.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}