მთავარ კონტენტზე გადასვლა
ამოხსნა x-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

1=x^{2}
ცვლადი x არ შეიძლება იყოს 0-ის ტოლი, ვინაიდან ნულზე გაყოფა არ არის განსაზღვრული. განტოლების ორივე მხარე გაამრავლეთ x^{2}-ზე.
x^{2}=1
შეუცვალეთ ადგილები ისე, რომ ყველა ცვლადი წევრები მარცხენა მხარეს აღმოჩნდეს.
x^{2}-1=0
გამოაკელით 1 ორივე მხარეს.
\left(x-1\right)\left(x+1\right)=0
განვიხილოთ x^{2}-1. ხელახლა დაწერეთ x^{2}-1, როგორც x^{2}-1^{2}. კვადრატების სხვაობა მამრავლებად დაიშლება შემდეგი წესით: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=1 x=-1
განტოლების პასუხების მისაღებად ამოხსენით x-1=0 და x+1=0.
1=x^{2}
ცვლადი x არ შეიძლება იყოს 0-ის ტოლი, ვინაიდან ნულზე გაყოფა არ არის განსაზღვრული. განტოლების ორივე მხარე გაამრავლეთ x^{2}-ზე.
x^{2}=1
შეუცვალეთ ადგილები ისე, რომ ყველა ცვლადი წევრები მარცხენა მხარეს აღმოჩნდეს.
x=1 x=-1
აიღეთ განტოლების ორივე მხარის კვადრატული ფესვი.
1=x^{2}
ცვლადი x არ შეიძლება იყოს 0-ის ტოლი, ვინაიდან ნულზე გაყოფა არ არის განსაზღვრული. განტოლების ორივე მხარე გაამრავლეთ x^{2}-ზე.
x^{2}=1
შეუცვალეთ ადგილები ისე, რომ ყველა ცვლადი წევრები მარცხენა მხარეს აღმოჩნდეს.
x^{2}-1=0
გამოაკელით 1 ორივე მხარეს.
x=\frac{0±\sqrt{0^{2}-4\left(-1\right)}}{2}
ეს განტოლება სტანდარტული ფორმისაა: ax^{2}+bx+c=0. ჩაანაცვლეთ 1-ით a, 0-ით b და -1-ით c კვადრატულ ფორმულაში, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-1\right)}}{2}
აიყვანეთ კვადრატში 0.
x=\frac{0±\sqrt{4}}{2}
გაამრავლეთ -4-ზე -1.
x=\frac{0±2}{2}
აიღეთ 4-ის კვადრატული ფესვი.
x=1
ახლა ამოხსენით განტოლება x=\frac{0±2}{2} როცა ± პლიუსია. გაყავით 2 2-ზე.
x=-1
ახლა ამოხსენით განტოლება x=\frac{0±2}{2} როცა ± მინუსია. გაყავით -2 2-ზე.
x=1 x=-1
განტოლება ახლა ამოხსნილია.