შეფასება
\frac{3y^{2}-5x}{30xy}
მამრავლი
\frac{\frac{3y^{2}}{x}-5}{30y}
გაზიარება
კოპირებულია ბუფერში
\frac{y}{10x}-\frac{1}{6y}
გააბათილეთ x როგორც მრიცხველში, ასევე მნიშვნელში.
\frac{y\times 3y}{30xy}-\frac{5x}{30xy}
გამოსახულებების მიმატებისთვის ან გამოკლებისთვის, დაშალეთ ისინი, რათა გახადოთ მათი მნიშვნელი ერთნაირი. 10x-ისა და 6y-ის უმცირესი საერთო მამრავლი არის 30xy. გაამრავლეთ \frac{y}{10x}-ზე \frac{3y}{3y}. გაამრავლეთ \frac{1}{6y}-ზე \frac{5x}{5x}.
\frac{y\times 3y-5x}{30xy}
რადგან \frac{y\times 3y}{30xy}-სა და \frac{5x}{30xy}-ს აქვს იგივე მნიშვნელი, გამოაკელით მათი მრიცხველები.
\frac{3y^{2}-5x}{30xy}
შეასრულეთ გამრავლება y\times 3y-5x-ში.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}