ამოხსნა x-ისთვის
x<-\frac{31}{2}
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
2\left(x-1\right)+3<-30
გაამრავლეთ განტოლების ორივე მხარე 6-ზე, 3,2-ის უმცირეს საერთო მამრავლზე. რადგან 6 დადებითია, უტოლობის მიმართულება უცვლელი რჩება.
2x-2+3<-30
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ 2 x-1-ზე.
2x+1<-30
შეკრიბეთ -2 და 3, რათა მიიღოთ 1.
2x<-30-1
გამოაკელით 1 ორივე მხარეს.
2x<-31
გამოაკელით 1 -30-ს -31-ის მისაღებად.
x<-\frac{31}{2}
ორივე მხარე გაყავით 2-ზე. რადგან 2 დადებითია, უტოლობის მიმართულება უცვლელი რჩება.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}