მთავარ კონტენტზე გადასვლა
ამოხსნა x-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

x^{2}-3x+4=-4\left(x-4\right)
ცვლადი x არ შეიძლება იყოს 4-ის ტოლი, ვინაიდან ნულზე გაყოფა არ არის განსაზღვრული. განტოლების ორივე მხარე გაამრავლეთ x-4-ზე.
x^{2}-3x+4=-4x+16
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ -4 x-4-ზე.
x^{2}-3x+4+4x=16
დაამატეთ 4x ორივე მხარეს.
x^{2}+x+4=16
დააჯგუფეთ -3x და 4x, რათა მიიღოთ x.
x^{2}+x+4-16=0
გამოაკელით 16 ორივე მხარეს.
x^{2}+x-12=0
გამოაკელით 16 4-ს -12-ის მისაღებად.
a+b=1 ab=-12
განტოლების ამოსახსნელად მამრავლებად დაშალეთ x^{2}+x-12 შემდეგი ფორმულის გამოყენებით: x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
-1,12 -2,6 -3,4
რადგან ab უარყოფითია, a-სა და b-ს აქვთ საპირისპირო ნიშანი. რადგან a+b დადებითია, დადებით რიცხვს აქვს უფრო მაღალი აბსოლუტური მნიშვნელობა, ვიდრე უარყოფით რიცხვს. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია -12.
-1+12=11 -2+6=4 -3+4=1
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=-3 b=4
ამონახსნი არის წყვილი, რომლის ჯამია 1.
\left(x-3\right)\left(x+4\right)
გადაწერეთ მამრავლებად დაშლილი ლოგიკური ფრაზა \left(x+a\right)\left(x+b\right) მიღებული მნიშვნელობების გამოყენებით.
x=3 x=-4
განტოლების პასუხების მისაღებად ამოხსენით x-3=0 და x+4=0.
x^{2}-3x+4=-4\left(x-4\right)
ცვლადი x არ შეიძლება იყოს 4-ის ტოლი, ვინაიდან ნულზე გაყოფა არ არის განსაზღვრული. განტოლების ორივე მხარე გაამრავლეთ x-4-ზე.
x^{2}-3x+4=-4x+16
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ -4 x-4-ზე.
x^{2}-3x+4+4x=16
დაამატეთ 4x ორივე მხარეს.
x^{2}+x+4=16
დააჯგუფეთ -3x და 4x, რათა მიიღოთ x.
x^{2}+x+4-16=0
გამოაკელით 16 ორივე მხარეს.
x^{2}+x-12=0
გამოაკელით 16 4-ს -12-ის მისაღებად.
a+b=1 ab=1\left(-12\right)=-12
განტოლების ამოსახსნელად მამრავლებად დაშალეთ მარცხენა ნაწილი დაჯგუფებით. ჯერ მარცხენა ნაწილი უნდა გადაიწეროს, როგორც x^{2}+ax+bx-12. a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
-1,12 -2,6 -3,4
რადგან ab უარყოფითია, a-სა და b-ს აქვთ საპირისპირო ნიშანი. რადგან a+b დადებითია, დადებით რიცხვს აქვს უფრო მაღალი აბსოლუტური მნიშვნელობა, ვიდრე უარყოფით რიცხვს. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია -12.
-1+12=11 -2+6=4 -3+4=1
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=-3 b=4
ამონახსნი არის წყვილი, რომლის ჯამია 1.
\left(x^{2}-3x\right)+\left(4x-12\right)
ხელახლა დაწერეთ x^{2}+x-12, როგორც \left(x^{2}-3x\right)+\left(4x-12\right).
x\left(x-3\right)+4\left(x-3\right)
x-ის პირველ, 4-ის კი მეორე ჯგუფში დაშლა მამრავლებად.
\left(x-3\right)\left(x+4\right)
გაიტანეთ ფრჩხილებს გარეთ საერთო წევრი x-3 დისტრიბუციული თვისების გამოყენებით.
x=3 x=-4
განტოლების პასუხების მისაღებად ამოხსენით x-3=0 და x+4=0.
x^{2}-3x+4=-4\left(x-4\right)
ცვლადი x არ შეიძლება იყოს 4-ის ტოლი, ვინაიდან ნულზე გაყოფა არ არის განსაზღვრული. განტოლების ორივე მხარე გაამრავლეთ x-4-ზე.
x^{2}-3x+4=-4x+16
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ -4 x-4-ზე.
x^{2}-3x+4+4x=16
დაამატეთ 4x ორივე მხარეს.
x^{2}+x+4=16
დააჯგუფეთ -3x და 4x, რათა მიიღოთ x.
x^{2}+x+4-16=0
გამოაკელით 16 ორივე მხარეს.
x^{2}+x-12=0
გამოაკელით 16 4-ს -12-ის მისაღებად.
x=\frac{-1±\sqrt{1^{2}-4\left(-12\right)}}{2}
ეს განტოლება სტანდარტული ფორმისაა: ax^{2}+bx+c=0. ჩაანაცვლეთ 1-ით a, 1-ით b და -12-ით c კვადრატულ ფორმულაში, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-12\right)}}{2}
აიყვანეთ კვადრატში 1.
x=\frac{-1±\sqrt{1+48}}{2}
გაამრავლეთ -4-ზე -12.
x=\frac{-1±\sqrt{49}}{2}
მიუმატეთ 1 48-ს.
x=\frac{-1±7}{2}
აიღეთ 49-ის კვადრატული ფესვი.
x=\frac{6}{2}
ახლა ამოხსენით განტოლება x=\frac{-1±7}{2} როცა ± პლიუსია. მიუმატეთ -1 7-ს.
x=3
გაყავით 6 2-ზე.
x=-\frac{8}{2}
ახლა ამოხსენით განტოლება x=\frac{-1±7}{2} როცა ± მინუსია. გამოაკელით 7 -1-ს.
x=-4
გაყავით -8 2-ზე.
x=3 x=-4
განტოლება ახლა ამოხსნილია.
x^{2}-3x+4=-4\left(x-4\right)
ცვლადი x არ შეიძლება იყოს 4-ის ტოლი, ვინაიდან ნულზე გაყოფა არ არის განსაზღვრული. განტოლების ორივე მხარე გაამრავლეთ x-4-ზე.
x^{2}-3x+4=-4x+16
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ -4 x-4-ზე.
x^{2}-3x+4+4x=16
დაამატეთ 4x ორივე მხარეს.
x^{2}+x+4=16
დააჯგუფეთ -3x და 4x, რათა მიიღოთ x.
x^{2}+x=16-4
გამოაკელით 4 ორივე მხარეს.
x^{2}+x=12
გამოაკელით 4 16-ს 12-ის მისაღებად.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=12+\left(\frac{1}{2}\right)^{2}
გაყავით 1, x წევრის კოეფიციენტი, 2-ზე, \frac{1}{2}-ის მისაღებად. შემდეგ დაამატეთ \frac{1}{2}-ის კვადრატი განტოლების ორივე მხარეს. ამის შედეგად განტოლების მარცხენა მხარე სრული კვადრატი გახდება.
x^{2}+x+\frac{1}{4}=12+\frac{1}{4}
აიყვანეთ კვადრატში \frac{1}{2} მამრავლის მრიცხველის და მნიშვნელის კვადრატში აყვანის გზით.
x^{2}+x+\frac{1}{4}=\frac{49}{4}
მიუმატეთ 12 \frac{1}{4}-ს.
\left(x+\frac{1}{2}\right)^{2}=\frac{49}{4}
დაშალეთ მამრავლებად x^{2}+x+\frac{1}{4}. ზოგადად, როცა x^{2}+bx+c სრული კვადრატია, ყოველთვის შესაძლებელია მისი დაშლა, როგორც \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
აიღეთ განტოლების ორივე მხარის კვადრატული ფესვი.
x+\frac{1}{2}=\frac{7}{2} x+\frac{1}{2}=-\frac{7}{2}
გაამარტივეთ.
x=3 x=-4
გამოაკელით \frac{1}{2} განტოლების ორივე მხარეს.