მთავარ კონტენტზე გადასვლა
ამოხსნა A-ისთვის
Tick mark Image
ამოხსნა x-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

ye-x\pi =Axy
გაამრავლეთ განტოლების ორივე მხარე xy-ზე, x,y-ის უმცირეს საერთო მამრავლზე.
Axy=ye-x\pi
შეუცვალეთ ადგილები ისე, რომ ყველა ცვლადი წევრები მარცხენა მხარეს აღმოჩნდეს.
Axy=-\pi x+ey
გადაალაგეთ წევრები.
xyA=ey-\pi x
განტოლება სტანდარტული ფორმისაა.
\frac{xyA}{xy}=\frac{ey-\pi x}{xy}
ორივე მხარე გაყავით xy-ზე.
A=\frac{ey-\pi x}{xy}
xy-ზე გაყოფა აუქმებს xy-ზე გამრავლებას.
A=\frac{e}{x}-\frac{\pi }{y}
გაყავით ey-\pi x xy-ზე.
ye-x\pi =Axy
ცვლადი x არ შეიძლება იყოს 0-ის ტოლი, ვინაიდან ნულზე გაყოფა არ არის განსაზღვრული. გაამრავლეთ განტოლების ორივე მხარე xy-ზე, x,y-ის უმცირეს საერთო მამრავლზე.
ye-x\pi -Axy=0
გამოაკელით Axy ორივე მხარეს.
-x\pi -Axy=-ye
გამოაკელით ye ორივე მხარეს. ნულს გამოკლებული ნებისმიერი რიცხვი უდრის ამავე უარყოფით რიცხვს.
\left(-\pi -Ay\right)x=-ye
დააჯგუფეთ ყველა წევრი, რომელიც შეიცავს შემდეგს: x.
\left(-Ay-\pi \right)x=-ey
განტოლება სტანდარტული ფორმისაა.
\frac{\left(-Ay-\pi \right)x}{-Ay-\pi }=-\frac{ey}{-Ay-\pi }
ორივე მხარე გაყავით -\pi -yA-ზე.
x=-\frac{ey}{-Ay-\pi }
-\pi -yA-ზე გაყოფა აუქმებს -\pi -yA-ზე გამრავლებას.
x=\frac{ey}{Ay+\pi }
გაყავით -ye -\pi -yA-ზე.
x=\frac{ey}{Ay+\pi }\text{, }x\neq 0
ცვლადი x არ შეიძლება იყოს 0-ის ტოლი.