ამოხსნა a-ისთვის
a=-5
a=4
გაზიარება
კოპირებულია ბუფერში
a^{3}-1=21\left(a-1\right)
ცვლადი a არ შეიძლება იყოს 1-ის ტოლი, ვინაიდან ნულზე გაყოფა არ არის განსაზღვრული. განტოლების ორივე მხარე გაამრავლეთ a-1-ზე.
a^{3}-1=21a-21
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ 21 a-1-ზე.
a^{3}-1-21a=-21
გამოაკელით 21a ორივე მხარეს.
a^{3}-1-21a+21=0
დაამატეთ 21 ორივე მხარეს.
a^{3}+20-21a=0
შეკრიბეთ -1 და 21, რათა მიიღოთ 20.
a^{3}-21a+20=0
გადაალაგეთ განტოლების წევრები, რათა მიიღოს სტანდარტული ფორმა. განალაგეთ წევრები უდიდესი ხარისხიდან უმცირეს ხარისხამდე თანმიმდევრობით.
±20,±10,±5,±4,±2,±1
რაციონალური ფესვების შესახებ თეორემის მიხედვით, მრავალწევრის ყველა რაციონალური ფესვი არის ფორმაში \frac{p}{q}, სადაც p ყოფს თავისუფალ წევრს20 და q ყოფს უფროს კოეფიციენტს 1. ჩამოთვალეთ ყველა შესაძლო ამონახსნი \frac{p}{q}.
a=1
იპოვნეთ ერთი ასეთი ფესვი ყველა მთელი რიცხვის მნიშვნელობის გადარჩევით, დაწყებული პატარადან, აბსოლუტური მნიშვნელობის მიხედვით. თუ მთელი რიცხვითი ფესვები ნაპოვნი არ არის, სცადეთ წილადები.
a^{2}+a-20=0
ბეზუს თეორემის მიხედვით, a-k არის მრავალწევრის მამრავლი თითოეული ფესვისთვის k. გაყავით a^{3}-21a+20 a-1-ზე a^{2}+a-20-ის მისაღებად. ამოხსენით განტოლება, სადაც შედეგი უდრის 0.
a=\frac{-1±\sqrt{1^{2}-4\times 1\left(-20\right)}}{2}
ax^{2}+bx+c=0 ფორმის ყველა განტოლების ამოხსნა შესაძლებელია კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ჩაანაცვლეთ 1 a-თვის, 1 b-თვის და -20 c-თვის კვადრატულ ფორმულაში.
a=\frac{-1±9}{2}
შეასრულეთ გამოთვლები.
a=-5 a=4
ამოხსენით განტოლება a^{2}+a-20=0, როცა ± არის პლუსი და როცა ± არის მინუსი.
a=4\text{ or }a=-5
წაშალეთ მნიშვნელობები, რომლის ტოლი ცვლადი არ შეიძლება იყოს.
a=1 a=-5 a=4
ჩამოთვალეთ ყველა ნაპოვნი ამოხსნა.
a=4 a=-5
ცვლადი a არ შეიძლება იყოს 1-ის ტოლი.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}