ამოხსნა x-ისთვის
x=-4
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
2\times 6-\left(-4-2x\right)\left(x+1\right)=\left(x-2\right)x
ცვლადი x არ შეიძლება იყოს მნიშვნელობათაგან -2,2 არცერთის ტოლი, ვინაიდან ნულზე გაყოფა არ არის განსაზღვრული. გაამრავლეთ განტოლების ორივე მხარე 2\left(x-2\right)\left(x+2\right)-ზე, x^{2}-4,2-x,2x+4-ის უმცირეს საერთო მამრავლზე.
12-\left(-4-2x\right)\left(x+1\right)=\left(x-2\right)x
გადაამრავლეთ 2 და 6, რათა მიიღოთ 12.
12-\left(-6x-4-2x^{2}\right)=\left(x-2\right)x
გამოიყენეთ განაწილების თვისება, რათა გაამრავლოთ -4-2x x+1-ზე და დააჯგუფეთ მსგავსი წევრები.
12+6x+4+2x^{2}=\left(x-2\right)x
-6x-4-2x^{2}-ის საპირისპირო მნიშვნელობის პოვნისთვის, იპოვეთ იგი ყოველი წევრისთვის.
16+6x+2x^{2}=\left(x-2\right)x
შეკრიბეთ 12 და 4, რათა მიიღოთ 16.
16+6x+2x^{2}=x^{2}-2x
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ x-2 x-ზე.
16+6x+2x^{2}-x^{2}=-2x
გამოაკელით x^{2} ორივე მხარეს.
16+6x+x^{2}=-2x
დააჯგუფეთ 2x^{2} და -x^{2}, რათა მიიღოთ x^{2}.
16+6x+x^{2}+2x=0
დაამატეთ 2x ორივე მხარეს.
16+8x+x^{2}=0
დააჯგუფეთ 6x და 2x, რათა მიიღოთ 8x.
x^{2}+8x+16=0
გადაალაგეთ პოლინომები სტანდარტულ ფორმაში მოსაყვანად. განალაგეთ წევრები უდიდესიდან უმცირეს ხარისხამდე.
a+b=8 ab=16
განტოლების ამოსახსნელად მამრავლებად დაშალეთ x^{2}+8x+16 შემდეგი ფორმულის გამოყენებით: x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
1,16 2,8 4,4
რადგან ab დადებითია, a-სა და b-ს ერთნაირი ნიშნები აქვთ. რადგან a+b დადებითია, ორივე, a და b დადებითია. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია 16.
1+16=17 2+8=10 4+4=8
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=4 b=4
ამონახსნი არის წყვილი, რომლის ჯამია 8.
\left(x+4\right)\left(x+4\right)
გადაწერეთ მამრავლებად დაშლილი ლოგიკური ფრაზა \left(x+a\right)\left(x+b\right) მიღებული მნიშვნელობების გამოყენებით.
\left(x+4\right)^{2}
გადაწერეთ ბინომის კვადრატის სახით.
x=-4
განტოლების პასუხის მისაღებად ამოხსენით x+4=0.
2\times 6-\left(-4-2x\right)\left(x+1\right)=\left(x-2\right)x
ცვლადი x არ შეიძლება იყოს მნიშვნელობათაგან -2,2 არცერთის ტოლი, ვინაიდან ნულზე გაყოფა არ არის განსაზღვრული. გაამრავლეთ განტოლების ორივე მხარე 2\left(x-2\right)\left(x+2\right)-ზე, x^{2}-4,2-x,2x+4-ის უმცირეს საერთო მამრავლზე.
12-\left(-4-2x\right)\left(x+1\right)=\left(x-2\right)x
გადაამრავლეთ 2 და 6, რათა მიიღოთ 12.
12-\left(-6x-4-2x^{2}\right)=\left(x-2\right)x
გამოიყენეთ განაწილების თვისება, რათა გაამრავლოთ -4-2x x+1-ზე და დააჯგუფეთ მსგავსი წევრები.
12+6x+4+2x^{2}=\left(x-2\right)x
-6x-4-2x^{2}-ის საპირისპირო მნიშვნელობის პოვნისთვის, იპოვეთ იგი ყოველი წევრისთვის.
16+6x+2x^{2}=\left(x-2\right)x
შეკრიბეთ 12 და 4, რათა მიიღოთ 16.
16+6x+2x^{2}=x^{2}-2x
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ x-2 x-ზე.
16+6x+2x^{2}-x^{2}=-2x
გამოაკელით x^{2} ორივე მხარეს.
16+6x+x^{2}=-2x
დააჯგუფეთ 2x^{2} და -x^{2}, რათა მიიღოთ x^{2}.
16+6x+x^{2}+2x=0
დაამატეთ 2x ორივე მხარეს.
16+8x+x^{2}=0
დააჯგუფეთ 6x და 2x, რათა მიიღოთ 8x.
x^{2}+8x+16=0
გადაალაგეთ პოლინომები სტანდარტულ ფორმაში მოსაყვანად. განალაგეთ წევრები უდიდესიდან უმცირეს ხარისხამდე.
a+b=8 ab=1\times 16=16
განტოლების ამოსახსნელად მამრავლებად დაშალეთ მარცხენა ნაწილი დაჯგუფებით. ჯერ მარცხენა ნაწილი უნდა გადაიწეროს, როგორც x^{2}+ax+bx+16. a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
1,16 2,8 4,4
რადგან ab დადებითია, a-სა და b-ს ერთნაირი ნიშნები აქვთ. რადგან a+b დადებითია, ორივე, a და b დადებითია. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია 16.
1+16=17 2+8=10 4+4=8
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=4 b=4
ამონახსნი არის წყვილი, რომლის ჯამია 8.
\left(x^{2}+4x\right)+\left(4x+16\right)
ხელახლა დაწერეთ x^{2}+8x+16, როგორც \left(x^{2}+4x\right)+\left(4x+16\right).
x\left(x+4\right)+4\left(x+4\right)
x-ის პირველ, 4-ის კი მეორე ჯგუფში დაშლა მამრავლებად.
\left(x+4\right)\left(x+4\right)
გაიტანეთ ფრჩხილებს გარეთ საერთო წევრი x+4 დისტრიბუციული თვისების გამოყენებით.
\left(x+4\right)^{2}
გადაწერეთ ბინომის კვადრატის სახით.
x=-4
განტოლების პასუხის მისაღებად ამოხსენით x+4=0.
2\times 6-\left(-4-2x\right)\left(x+1\right)=\left(x-2\right)x
ცვლადი x არ შეიძლება იყოს მნიშვნელობათაგან -2,2 არცერთის ტოლი, ვინაიდან ნულზე გაყოფა არ არის განსაზღვრული. გაამრავლეთ განტოლების ორივე მხარე 2\left(x-2\right)\left(x+2\right)-ზე, x^{2}-4,2-x,2x+4-ის უმცირეს საერთო მამრავლზე.
12-\left(-4-2x\right)\left(x+1\right)=\left(x-2\right)x
გადაამრავლეთ 2 და 6, რათა მიიღოთ 12.
12-\left(-6x-4-2x^{2}\right)=\left(x-2\right)x
გამოიყენეთ განაწილების თვისება, რათა გაამრავლოთ -4-2x x+1-ზე და დააჯგუფეთ მსგავსი წევრები.
12+6x+4+2x^{2}=\left(x-2\right)x
-6x-4-2x^{2}-ის საპირისპირო მნიშვნელობის პოვნისთვის, იპოვეთ იგი ყოველი წევრისთვის.
16+6x+2x^{2}=\left(x-2\right)x
შეკრიბეთ 12 და 4, რათა მიიღოთ 16.
16+6x+2x^{2}=x^{2}-2x
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ x-2 x-ზე.
16+6x+2x^{2}-x^{2}=-2x
გამოაკელით x^{2} ორივე მხარეს.
16+6x+x^{2}=-2x
დააჯგუფეთ 2x^{2} და -x^{2}, რათა მიიღოთ x^{2}.
16+6x+x^{2}+2x=0
დაამატეთ 2x ორივე მხარეს.
16+8x+x^{2}=0
დააჯგუფეთ 6x და 2x, რათა მიიღოთ 8x.
x^{2}+8x+16=0
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x=\frac{-8±\sqrt{8^{2}-4\times 16}}{2}
ეს განტოლება სტანდარტული ფორმისაა: ax^{2}+bx+c=0. ჩაანაცვლეთ 1-ით a, 8-ით b და 16-ით c კვადრატულ ფორმულაში, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 16}}{2}
აიყვანეთ კვადრატში 8.
x=\frac{-8±\sqrt{64-64}}{2}
გაამრავლეთ -4-ზე 16.
x=\frac{-8±\sqrt{0}}{2}
მიუმატეთ 64 -64-ს.
x=-\frac{8}{2}
აიღეთ 0-ის კვადრატული ფესვი.
x=-4
გაყავით -8 2-ზე.
2\times 6-\left(-4-2x\right)\left(x+1\right)=\left(x-2\right)x
ცვლადი x არ შეიძლება იყოს მნიშვნელობათაგან -2,2 არცერთის ტოლი, ვინაიდან ნულზე გაყოფა არ არის განსაზღვრული. გაამრავლეთ განტოლების ორივე მხარე 2\left(x-2\right)\left(x+2\right)-ზე, x^{2}-4,2-x,2x+4-ის უმცირეს საერთო მამრავლზე.
12-\left(-4-2x\right)\left(x+1\right)=\left(x-2\right)x
გადაამრავლეთ 2 და 6, რათა მიიღოთ 12.
12-\left(-6x-4-2x^{2}\right)=\left(x-2\right)x
გამოიყენეთ განაწილების თვისება, რათა გაამრავლოთ -4-2x x+1-ზე და დააჯგუფეთ მსგავსი წევრები.
12+6x+4+2x^{2}=\left(x-2\right)x
-6x-4-2x^{2}-ის საპირისპირო მნიშვნელობის პოვნისთვის, იპოვეთ იგი ყოველი წევრისთვის.
16+6x+2x^{2}=\left(x-2\right)x
შეკრიბეთ 12 და 4, რათა მიიღოთ 16.
16+6x+2x^{2}=x^{2}-2x
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ x-2 x-ზე.
16+6x+2x^{2}-x^{2}=-2x
გამოაკელით x^{2} ორივე მხარეს.
16+6x+x^{2}=-2x
დააჯგუფეთ 2x^{2} და -x^{2}, რათა მიიღოთ x^{2}.
16+6x+x^{2}+2x=0
დაამატეთ 2x ორივე მხარეს.
16+8x+x^{2}=0
დააჯგუფეთ 6x და 2x, რათა მიიღოთ 8x.
8x+x^{2}=-16
გამოაკელით 16 ორივე მხარეს. ნულს გამოკლებული ნებისმიერი რიცხვი უდრის ამავე უარყოფით რიცხვს.
x^{2}+8x=-16
ამის მსგავსი კვადრატული განტოლებების ამოხსნა შესაძლებელია კვადრატის გამოთვლით. კვადრატის გამოსათვლელად, განტოლებამ ჯერ უნდა მიიღოს შემდეგი ფორმა: x^{2}+bx=c.
x^{2}+8x+4^{2}=-16+4^{2}
გაყავით 8, x წევრის კოეფიციენტი, 2-ზე, 4-ის მისაღებად. შემდეგ დაამატეთ 4-ის კვადრატი განტოლების ორივე მხარეს. ამის შედეგად განტოლების მარცხენა მხარე სრული კვადრატი გახდება.
x^{2}+8x+16=-16+16
აიყვანეთ კვადრატში 4.
x^{2}+8x+16=0
მიუმატეთ -16 16-ს.
\left(x+4\right)^{2}=0
დაშალეთ მამრავლებად x^{2}+8x+16. ზოგადად, როცა x^{2}+bx+c სრული კვადრატია, ყოველთვის შესაძლებელია მისი დაშლა, როგორც \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{0}
აიღეთ განტოლების ორივე მხარის კვადრატული ფესვი.
x+4=0 x+4=0
გაამარტივეთ.
x=-4 x=-4
გამოაკელით 4 განტოლების ორივე მხარეს.
x=-4
განტოლება ახლა ამოხსნილია. ამონახსბები იგივეა.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}