ამოხსნა x-ისთვის
x=4
x=0
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
4x-1=\left(x+1\right)x+\left(x+1\right)\left(-1\right)
ცვლადი x არ შეიძლება იყოს -1-ის ტოლი, ვინაიდან ნულზე გაყოფა არ არის განსაზღვრული. განტოლების ორივე მხარე გაამრავლეთ x+1-ზე.
4x-1=x^{2}+x+\left(x+1\right)\left(-1\right)
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ x+1 x-ზე.
4x-1=x^{2}+x-x-1
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ x+1 -1-ზე.
4x-1=x^{2}-1
დააჯგუფეთ x და -x, რათა მიიღოთ 0.
4x-1-x^{2}=-1
გამოაკელით x^{2} ორივე მხარეს.
4x-1-x^{2}+1=0
დაამატეთ 1 ორივე მხარეს.
4x-x^{2}=0
შეკრიბეთ -1 და 1, რათა მიიღოთ 0.
-x^{2}+4x=0
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x=\frac{-4±\sqrt{4^{2}}}{2\left(-1\right)}
ეს განტოლება სტანდარტული ფორმისაა: ax^{2}+bx+c=0. ჩაანაცვლეთ -1-ით a, 4-ით b და 0-ით c კვადრატულ ფორმულაში, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±4}{2\left(-1\right)}
აიღეთ 4^{2}-ის კვადრატული ფესვი.
x=\frac{-4±4}{-2}
გაამრავლეთ 2-ზე -1.
x=\frac{0}{-2}
ახლა ამოხსენით განტოლება x=\frac{-4±4}{-2} როცა ± პლიუსია. მიუმატეთ -4 4-ს.
x=0
გაყავით 0 -2-ზე.
x=-\frac{8}{-2}
ახლა ამოხსენით განტოლება x=\frac{-4±4}{-2} როცა ± მინუსია. გამოაკელით 4 -4-ს.
x=4
გაყავით -8 -2-ზე.
x=0 x=4
განტოლება ახლა ამოხსნილია.
4x-1=\left(x+1\right)x+\left(x+1\right)\left(-1\right)
ცვლადი x არ შეიძლება იყოს -1-ის ტოლი, ვინაიდან ნულზე გაყოფა არ არის განსაზღვრული. განტოლების ორივე მხარე გაამრავლეთ x+1-ზე.
4x-1=x^{2}+x+\left(x+1\right)\left(-1\right)
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ x+1 x-ზე.
4x-1=x^{2}+x-x-1
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ x+1 -1-ზე.
4x-1=x^{2}-1
დააჯგუფეთ x და -x, რათა მიიღოთ 0.
4x-1-x^{2}=-1
გამოაკელით x^{2} ორივე მხარეს.
4x-x^{2}=-1+1
დაამატეთ 1 ორივე მხარეს.
4x-x^{2}=0
შეკრიბეთ -1 და 1, რათა მიიღოთ 0.
-x^{2}+4x=0
ამის მსგავსი კვადრატული განტოლებების ამოხსნა შესაძლებელია კვადრატის გამოთვლით. კვადრატის გამოსათვლელად, განტოლებამ ჯერ უნდა მიიღოს შემდეგი ფორმა: x^{2}+bx=c.
\frac{-x^{2}+4x}{-1}=\frac{0}{-1}
ორივე მხარე გაყავით -1-ზე.
x^{2}+\frac{4}{-1}x=\frac{0}{-1}
-1-ზე გაყოფა აუქმებს -1-ზე გამრავლებას.
x^{2}-4x=\frac{0}{-1}
გაყავით 4 -1-ზე.
x^{2}-4x=0
გაყავით 0 -1-ზე.
x^{2}-4x+\left(-2\right)^{2}=\left(-2\right)^{2}
გაყავით -4, x წევრის კოეფიციენტი, 2-ზე, -2-ის მისაღებად. შემდეგ დაამატეთ -2-ის კვადრატი განტოლების ორივე მხარეს. ამის შედეგად განტოლების მარცხენა მხარე სრული კვადრატი გახდება.
x^{2}-4x+4=4
აიყვანეთ კვადრატში -2.
\left(x-2\right)^{2}=4
დაშალეთ მამრავლებად x^{2}-4x+4. ზოგადად, როცა x^{2}+bx+c სრული კვადრატია, ყოველთვის შესაძლებელია მისი დაშლა, როგორც \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{4}
აიღეთ განტოლების ორივე მხარის კვადრატული ფესვი.
x-2=2 x-2=-2
გაამარტივეთ.
x=4 x=0
მიუმატეთ 2 განტოლების ორივე მხარეს.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}