ამოხსნა x-ისთვის
x=\frac{109}{117}\approx 0.931623932
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
18\left(3-4x\right)-15\left(x-1\right)=30\left(4+x\right)-160
გაამრავლეთ განტოლების ორივე მხარე 90-ზე, 5,6,3,9-ის უმცირეს საერთო მამრავლზე.
54-72x-15\left(x-1\right)=30\left(4+x\right)-160
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ 18 3-4x-ზე.
54-72x-15x+15=30\left(4+x\right)-160
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ -15 x-1-ზე.
54-87x+15=30\left(4+x\right)-160
დააჯგუფეთ -72x და -15x, რათა მიიღოთ -87x.
69-87x=30\left(4+x\right)-160
შეკრიბეთ 54 და 15, რათა მიიღოთ 69.
69-87x=120+30x-160
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ 30 4+x-ზე.
69-87x=-40+30x
გამოაკელით 160 120-ს -40-ის მისაღებად.
69-87x-30x=-40
გამოაკელით 30x ორივე მხარეს.
69-117x=-40
დააჯგუფეთ -87x და -30x, რათა მიიღოთ -117x.
-117x=-40-69
გამოაკელით 69 ორივე მხარეს.
-117x=-109
გამოაკელით 69 -40-ს -109-ის მისაღებად.
x=\frac{-109}{-117}
ორივე მხარე გაყავით -117-ზე.
x=\frac{109}{117}
წილადი \frac{-109}{-117} შეიძლება გამარტივდეს როგორც \frac{109}{117} მრიცხველიდან და მნიშვნელიდან უარყოფითი ნიშნის მოცილებით.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}