შეფასება
-\frac{4}{r^{11}}
დიფერენცირება r-ის მიმართ
\frac{44}{r^{12}}
გაზიარება
კოპირებულია ბუფერში
\left(28r^{4}\right)^{1}\times \frac{1}{-7r^{15}}
გამოიყენეთ ექსპონენტების წესები გამოსახულების გამარტივებისთვის.
28^{1}\left(r^{4}\right)^{1}\times \frac{1}{-7}\times \frac{1}{r^{15}}
ორი ან მეტი რიცხვის ნამრავლის ხარისხში ასაყვანად, აიყვანეთ თითოეული რიცხვი ხარისხში და აიღეთ მათი ნამრავლი.
28^{1}\times \frac{1}{-7}\left(r^{4}\right)^{1}\times \frac{1}{r^{15}}
გამოიყენეთ გამრავლების კომუტატიურობის თვისება.
28^{1}\times \frac{1}{-7}r^{4}r^{15\left(-1\right)}
რიცხვის ხარისხის სხვა ხარისხში ასაყვანად, გადაამრავლეთ ექსპონენტები.
28^{1}\times \frac{1}{-7}r^{4}r^{-15}
გაამრავლეთ 15-ზე -1.
28^{1}\times \frac{1}{-7}r^{4-15}
იმავე ფუძის ჯერადი რიცხვების გადამრავლებისთვის, შეკრიბეთ მათი ექსპონენტები.
28^{1}\times \frac{1}{-7}r^{-11}
შეკრიბეთ ექსპონენტები 4 და -15.
28\times \frac{1}{-7}r^{-11}
აიყვანეთ 28 ხარისხში 1.
28\left(-\frac{1}{7}\right)r^{-11}
აიყვანეთ -7 ხარისხში -1.
-4r^{-11}
გაამრავლეთ 28-ზე -\frac{1}{7}.
\frac{28^{1}r^{4}}{\left(-7\right)^{1}r^{15}}
გამოიყენეთ ექსპონენტების წესები გამოსახულების გამარტივებისთვის.
\frac{28^{1}r^{4-15}}{\left(-7\right)^{1}}
იმავე ფუძის ჯერადი რიცხვების გასაყოფად, გამოაკელით მნიშვნელის ექსპონენტი მრიცხველის ექსპონენტს.
\frac{28^{1}r^{-11}}{\left(-7\right)^{1}}
გამოაკელით 15 4-ს.
-4r^{-11}
გაყავით 28 -7-ზე.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{28}{-7}r^{4-15})
იმავე ფუძის ჯერადი რიცხვების გასაყოფად, გამოაკელით მნიშვნელის ექსპონენტი მრიცხველის ექსპონენტს.
\frac{\mathrm{d}}{\mathrm{d}r}(-4r^{-11})
შეასრულეთ არითმეტიკული მოქმედება.
-11\left(-4\right)r^{-11-1}
პოლინომის დერივატივი არის მისი წევრების დერივატივების ჯამი. ნებისმიერი კონსტანტის დერივატივი არის 0. ax^{n}-ის დერივატივი არის nax^{n-1}.
44r^{-12}
შეასრულეთ არითმეტიკული მოქმედება.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}