ამოხსნა y-ისთვის
y=0
დიაგრამა
ვიქტორინა
Linear Equation
5 მსგავსი პრობლემები:
\frac { 21 } { 2 } \cdot ( \frac { - 2 y } { 5 } ) + y = 0
გაზიარება
კოპირებულია ბუფერში
21\left(-2\right)y+10y=0
გაამრავლეთ განტოლების ორივე მხარე 10-ზე, 2,5-ის უმცირეს საერთო მამრავლზე.
-42y+10y=0
გადაამრავლეთ 21 და -2, რათა მიიღოთ -42.
-32y=0
დააჯგუფეთ -42y და 10y, რათა მიიღოთ -32y.
y=0
ორი რიცხვის ნამრავლი ტოლია 0, თუ მინიმუმ ერთ-ერთი მათგანი შეადგენს 0. ვინაიდან -32 არ უტოლდება 0-ს, y უნდა უტოლდებოდეს 0.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}