შეფასება
\frac{7-2x}{\left(x-2\right)\left(x+1\right)}
დიფერენცირება x-ის მიმართ
\frac{2x^{2}-14x+11}{x^{4}-2x^{3}-3x^{2}+4x+4}
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
\frac{x+1}{\left(x-2\right)\left(x+1\right)}-\frac{3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}
გამოსახულებების მიმატებისთვის ან გამოკლებისთვის, დაშალეთ ისინი, რათა გახადოთ მათი მნიშვნელი ერთნაირი. x-2-ისა და x+1-ის უმცირესი საერთო მამრავლი არის \left(x-2\right)\left(x+1\right). გაამრავლეთ \frac{1}{x-2}-ზე \frac{x+1}{x+1}. გაამრავლეთ \frac{3}{x+1}-ზე \frac{x-2}{x-2}.
\frac{x+1-3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}
რადგან \frac{x+1}{\left(x-2\right)\left(x+1\right)}-სა და \frac{3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}-ს აქვს იგივე მნიშვნელი, გამოაკელით მათი მრიცხველები.
\frac{x+1-3x+6}{\left(x-2\right)\left(x+1\right)}
შეასრულეთ გამრავლება x+1-3\left(x-2\right)-ში.
\frac{-2x+7}{\left(x-2\right)\left(x+1\right)}
მსგავსი წევრების გაერთიანება x+1-3x+6-ში.
\frac{-2x+7}{x^{2}-x-2}
დაშალეთ \left(x-2\right)\left(x+1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+1}{\left(x-2\right)\left(x+1\right)}-\frac{3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)})
გამოსახულებების მიმატებისთვის ან გამოკლებისთვის, დაშალეთ ისინი, რათა გახადოთ მათი მნიშვნელი ერთნაირი. x-2-ისა და x+1-ის უმცირესი საერთო მამრავლი არის \left(x-2\right)\left(x+1\right). გაამრავლეთ \frac{1}{x-2}-ზე \frac{x+1}{x+1}. გაამრავლეთ \frac{3}{x+1}-ზე \frac{x-2}{x-2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+1-3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)})
რადგან \frac{x+1}{\left(x-2\right)\left(x+1\right)}-სა და \frac{3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}-ს აქვს იგივე მნიშვნელი, გამოაკელით მათი მრიცხველები.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+1-3x+6}{\left(x-2\right)\left(x+1\right)})
შეასრულეთ გამრავლება x+1-3\left(x-2\right)-ში.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-2x+7}{\left(x-2\right)\left(x+1\right)})
მსგავსი წევრების გაერთიანება x+1-3x+6-ში.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-2x+7}{x^{2}+x-2x-2})
გამოიყენეთ დისტრიბუტულობის თვისება და გაამრავლეთ x-2-ის თითოეული წევრი x+1-ის თითოეულ წევრზე.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-2x+7}{x^{2}-x-2})
დააჯგუფეთ x და -2x, რათა მიიღოთ -x.
\frac{\left(x^{2}-x^{1}-2\right)\frac{\mathrm{d}}{\mathrm{d}x}(-2x^{1}+7)-\left(-2x^{1}+7\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x^{1}-2)}{\left(x^{2}-x^{1}-2\right)^{2}}
ნებისმიერი ორი დიფერენცირებული ფუნქციისთვის,ორი ფუნქციის განაყოფის დერივატივი არის მნიშვნელზე გამრავლებული მრიცხველის დერივატივი მინუს მრიცხველზე გამრავლებული მნიშვნელის დერივატივი და ყველაფერი ეს გაყოფილი მნიშვნელის კვადრატზე.
\frac{\left(x^{2}-x^{1}-2\right)\left(-2\right)x^{1-1}-\left(-2x^{1}+7\right)\left(2x^{2-1}-x^{1-1}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
პოლინომის დერივატივი არის მისი წევრების დერივატივების ჯამი. ნებისმიერი კონსტანტის დერივატივი არის 0. ax^{n}-ის დერივატივი არის nax^{n-1}.
\frac{\left(x^{2}-x^{1}-2\right)\left(-2\right)x^{0}-\left(-2x^{1}+7\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
გაამარტივეთ.
\frac{x^{2}\left(-2\right)x^{0}-x^{1}\left(-2\right)x^{0}-2\left(-2\right)x^{0}-\left(-2x^{1}+7\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
გაამრავლეთ x^{2}-x^{1}-2-ზე -2x^{0}.
\frac{x^{2}\left(-2\right)x^{0}-x^{1}\left(-2\right)x^{0}-2\left(-2\right)x^{0}-\left(-2x^{1}\times 2x^{1}-2x^{1}\left(-1\right)x^{0}+7\times 2x^{1}+7\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
გაამრავლეთ -2x^{1}+7-ზე 2x^{1}-x^{0}.
\frac{-2x^{2}-\left(-2x^{1}\right)-2\left(-2\right)x^{0}-\left(-2\times 2x^{1+1}-2\left(-1\right)x^{1}+7\times 2x^{1}+7\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
იმავე ფუძის ჯერადი რიცხვების გადამრავლებისთვის, შეკრიბეთ მათი ექსპონენტები.
\frac{-2x^{2}+2x^{1}+4x^{0}-\left(-4x^{2}+2x^{1}+14x^{1}-7x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
გაამარტივეთ.
\frac{2x^{2}-14x^{1}+11x^{0}}{\left(x^{2}-x^{1}-2\right)^{2}}
დააჯგუფეთ მსგავსი წევრები.
\frac{2x^{2}-14x+11x^{0}}{\left(x^{2}-x-2\right)^{2}}
ნებისმიერი წევრისთვის t, t^{1}=t.
\frac{2x^{2}-14x+11\times 1}{\left(x^{2}-x-2\right)^{2}}
ნებისმიერი წევრისთვის t, 0-ის გარდა, t^{0}=1.
\frac{2x^{2}-14x+11}{\left(x^{2}-x-2\right)^{2}}
ნებისმიერი წევრისთვის t, t\times 1=t და 1t=t.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}