შეფასება
\frac{3}{\left(x+1\right)\left(x+7\right)}
დიფერენცირება x-ის მიმართ
\frac{6\left(-x-4\right)}{\left(\left(x+1\right)\left(x+7\right)\right)^{2}}
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+\frac{1}{x^{2}+12x+35}
კოეფიციენტი x^{2}+4x+3. კოეფიციენტი x^{2}+8x+15.
\frac{x+5}{\left(x+1\right)\left(x+3\right)\left(x+5\right)}+\frac{x+1}{\left(x+1\right)\left(x+3\right)\left(x+5\right)}+\frac{1}{x^{2}+12x+35}
გამოსახულებების მიმატებისთვის ან გამოკლებისთვის, დაშალეთ ისინი, რათა გახადოთ მათი მნიშვნელი ერთნაირი. \left(x+1\right)\left(x+3\right)-ისა და \left(x+3\right)\left(x+5\right)-ის უმცირესი საერთო მამრავლი არის \left(x+1\right)\left(x+3\right)\left(x+5\right). გაამრავლეთ \frac{1}{\left(x+1\right)\left(x+3\right)}-ზე \frac{x+5}{x+5}. გაამრავლეთ \frac{1}{\left(x+3\right)\left(x+5\right)}-ზე \frac{x+1}{x+1}.
\frac{x+5+x+1}{\left(x+1\right)\left(x+3\right)\left(x+5\right)}+\frac{1}{x^{2}+12x+35}
რადგან \frac{x+5}{\left(x+1\right)\left(x+3\right)\left(x+5\right)}-სა და \frac{x+1}{\left(x+1\right)\left(x+3\right)\left(x+5\right)}-ს აქვს იგივე მნიშვნელი, შეკრიბეთ მათი მრიცხველები.
\frac{2x+6}{\left(x+1\right)\left(x+3\right)\left(x+5\right)}+\frac{1}{x^{2}+12x+35}
მსგავსი წევრების გაერთიანება x+5+x+1-ში.
\frac{2\left(x+3\right)}{\left(x+1\right)\left(x+3\right)\left(x+5\right)}+\frac{1}{x^{2}+12x+35}
აღრიცხეთ ყველა გამოსახულება, რომლიც ჯერ არ არის აღრიცხული \frac{2x+6}{\left(x+1\right)\left(x+3\right)\left(x+5\right)}-ში.
\frac{2}{\left(x+1\right)\left(x+5\right)}+\frac{1}{x^{2}+12x+35}
გააბათილეთ x+3 როგორც მრიცხველში, ასევე მნიშვნელში.
\frac{2}{\left(x+1\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+7\right)}
კოეფიციენტი x^{2}+12x+35.
\frac{2\left(x+7\right)}{\left(x+1\right)\left(x+5\right)\left(x+7\right)}+\frac{x+1}{\left(x+1\right)\left(x+5\right)\left(x+7\right)}
გამოსახულებების მიმატებისთვის ან გამოკლებისთვის, დაშალეთ ისინი, რათა გახადოთ მათი მნიშვნელი ერთნაირი. \left(x+1\right)\left(x+5\right)-ისა და \left(x+5\right)\left(x+7\right)-ის უმცირესი საერთო მამრავლი არის \left(x+1\right)\left(x+5\right)\left(x+7\right). გაამრავლეთ \frac{2}{\left(x+1\right)\left(x+5\right)}-ზე \frac{x+7}{x+7}. გაამრავლეთ \frac{1}{\left(x+5\right)\left(x+7\right)}-ზე \frac{x+1}{x+1}.
\frac{2\left(x+7\right)+x+1}{\left(x+1\right)\left(x+5\right)\left(x+7\right)}
რადგან \frac{2\left(x+7\right)}{\left(x+1\right)\left(x+5\right)\left(x+7\right)}-სა და \frac{x+1}{\left(x+1\right)\left(x+5\right)\left(x+7\right)}-ს აქვს იგივე მნიშვნელი, შეკრიბეთ მათი მრიცხველები.
\frac{2x+14+x+1}{\left(x+1\right)\left(x+5\right)\left(x+7\right)}
შეასრულეთ გამრავლება 2\left(x+7\right)+x+1-ში.
\frac{3x+15}{\left(x+1\right)\left(x+5\right)\left(x+7\right)}
მსგავსი წევრების გაერთიანება 2x+14+x+1-ში.
\frac{3\left(x+5\right)}{\left(x+1\right)\left(x+5\right)\left(x+7\right)}
აღრიცხეთ ყველა გამოსახულება, რომლიც ჯერ არ არის აღრიცხული \frac{3x+15}{\left(x+1\right)\left(x+5\right)\left(x+7\right)}-ში.
\frac{3}{\left(x+1\right)\left(x+7\right)}
გააბათილეთ x+5 როგორც მრიცხველში, ასევე მნიშვნელში.
\frac{3}{x^{2}+8x+7}
დაშალეთ \left(x+1\right)\left(x+7\right).
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}