ამოხსნა c-ისთვის
\left\{\begin{matrix}c=\frac{m}{8m_{6}}\text{, }&m_{6}\neq 0\\c\in \mathrm{R}\text{, }&m=0\text{ and }m_{6}=0\end{matrix}\right.
ამოხსნა m-ისთვის
m=8cm_{6}
გაზიარება
კოპირებულია ბუფერში
cm_{6}=\frac{1}{8}m
შეუცვალეთ ადგილები ისე, რომ ყველა ცვლადი წევრები მარცხენა მხარეს აღმოჩნდეს.
m_{6}c=\frac{m}{8}
განტოლება სტანდარტული ფორმისაა.
\frac{m_{6}c}{m_{6}}=\frac{m}{8m_{6}}
ორივე მხარე გაყავით m_{6}-ზე.
c=\frac{m}{8m_{6}}
m_{6}-ზე გაყოფა აუქმებს m_{6}-ზე გამრავლებას.
\frac{1}{8}m=cm_{6}
განტოლება სტანდარტული ფორმისაა.
\frac{\frac{1}{8}m}{\frac{1}{8}}=\frac{cm_{6}}{\frac{1}{8}}
ორივე მხარე გაამრავლეთ 8-ზე.
m=\frac{cm_{6}}{\frac{1}{8}}
\frac{1}{8}-ზე გაყოფა აუქმებს \frac{1}{8}-ზე გამრავლებას.
m=8cm_{6}
გაყავით cm_{6} \frac{1}{8}-ზე cm_{6}-ის გამრავლებით \frac{1}{8}-ის შექცეულ სიდიდეზე.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}