ამოხსნა x-ისთვის
x=3
x=0
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
x\left(\frac{1}{2}x-\frac{3}{2}\right)=0
ფრჩხილებს გარეთ გაიტანეთ x.
x=0 x=3
განტოლების პასუხების მისაღებად ამოხსენით x=0 და \frac{x-3}{2}=0.
\frac{1}{2}x^{2}-\frac{3}{2}x=0
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\left(-\frac{3}{2}\right)^{2}}}{2\times \frac{1}{2}}
ეს განტოლება სტანდარტული ფორმისაა: ax^{2}+bx+c=0. ჩაანაცვლეთ \frac{1}{2}-ით a, -\frac{3}{2}-ით b და 0-ით c კვადრატულ ფორმულაში, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{3}{2}\right)±\frac{3}{2}}{2\times \frac{1}{2}}
აიღეთ \left(-\frac{3}{2}\right)^{2}-ის კვადრატული ფესვი.
x=\frac{\frac{3}{2}±\frac{3}{2}}{2\times \frac{1}{2}}
-\frac{3}{2}-ის საპირისპიროა \frac{3}{2}.
x=\frac{\frac{3}{2}±\frac{3}{2}}{1}
გაამრავლეთ 2-ზე \frac{1}{2}.
x=\frac{3}{1}
ახლა ამოხსენით განტოლება x=\frac{\frac{3}{2}±\frac{3}{2}}{1} როცა ± პლიუსია. მიუმატეთ \frac{3}{2} \frac{3}{2}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების შეკრების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
x=3
გაყავით 3 1-ზე.
x=\frac{0}{1}
ახლა ამოხსენით განტოლება x=\frac{\frac{3}{2}±\frac{3}{2}}{1} როცა ± მინუსია. გამოაკელით \frac{3}{2} \frac{3}{2}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების გამოკლების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
x=0
გაყავით 0 1-ზე.
x=3 x=0
განტოლება ახლა ამოხსნილია.
\frac{1}{2}x^{2}-\frac{3}{2}x=0
ამის მსგავსი კვადრატული განტოლებების ამოხსნა შესაძლებელია კვადრატის გამოთვლით. კვადრატის გამოსათვლელად, განტოლებამ ჯერ უნდა მიიღოს შემდეგი ფორმა: x^{2}+bx=c.
\frac{\frac{1}{2}x^{2}-\frac{3}{2}x}{\frac{1}{2}}=\frac{0}{\frac{1}{2}}
ორივე მხარე გაამრავლეთ 2-ზე.
x^{2}+\left(-\frac{\frac{3}{2}}{\frac{1}{2}}\right)x=\frac{0}{\frac{1}{2}}
\frac{1}{2}-ზე გაყოფა აუქმებს \frac{1}{2}-ზე გამრავლებას.
x^{2}-3x=\frac{0}{\frac{1}{2}}
გაყავით -\frac{3}{2} \frac{1}{2}-ზე -\frac{3}{2}-ის გამრავლებით \frac{1}{2}-ის შექცეულ სიდიდეზე.
x^{2}-3x=0
გაყავით 0 \frac{1}{2}-ზე 0-ის გამრავლებით \frac{1}{2}-ის შექცეულ სიდიდეზე.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=\left(-\frac{3}{2}\right)^{2}
გაყავით -3, x წევრის კოეფიციენტი, 2-ზე, -\frac{3}{2}-ის მისაღებად. შემდეგ დაამატეთ -\frac{3}{2}-ის კვადრატი განტოლების ორივე მხარეს. ამის შედეგად განტოლების მარცხენა მხარე სრული კვადრატი გახდება.
x^{2}-3x+\frac{9}{4}=\frac{9}{4}
აიყვანეთ კვადრატში -\frac{3}{2} მამრავლის მრიცხველის და მნიშვნელის კვადრატში აყვანის გზით.
\left(x-\frac{3}{2}\right)^{2}=\frac{9}{4}
დაშალეთ მამრავლებად x^{2}-3x+\frac{9}{4}. ზოგადად, როცა x^{2}+bx+c სრული კვადრატია, ყოველთვის შესაძლებელია მისი დაშლა, როგორც \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
აიღეთ განტოლების ორივე მხარის კვადრატული ფესვი.
x-\frac{3}{2}=\frac{3}{2} x-\frac{3}{2}=-\frac{3}{2}
გაამარტივეთ.
x=3 x=0
მიუმატეთ \frac{3}{2} განტოლების ორივე მხარეს.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}