შეფასება
-\frac{9}{2}=-4.5
მამრავლი
-\frac{9}{2} = -4\frac{1}{2} = -4.5
გაზიარება
კოპირებულია ბუფერში
\frac{1+\frac{1\times 3}{3\times 5}}{\frac{1}{3}-\frac{3}{5}}
გაამრავლეთ \frac{1}{3}-ზე \frac{3}{5}-ჯერ მრიცხველის მრიცხველზე და მნიშვნელის მნიშვნელზე გამრავლების გზით.
\frac{1+\frac{1}{5}}{\frac{1}{3}-\frac{3}{5}}
გააბათილეთ 3 როგორც მრიცხველში, ასევე მნიშვნელში.
\frac{\frac{5}{5}+\frac{1}{5}}{\frac{1}{3}-\frac{3}{5}}
გადაიყვანეთ 1 წილადად \frac{5}{5}.
\frac{\frac{5+1}{5}}{\frac{1}{3}-\frac{3}{5}}
რადგან \frac{5}{5}-სა და \frac{1}{5}-ს აქვს იგივე მნიშვნელი, შეკრიბეთ მათი მრიცხველები.
\frac{\frac{6}{5}}{\frac{1}{3}-\frac{3}{5}}
შეკრიბეთ 5 და 1, რათა მიიღოთ 6.
\frac{\frac{6}{5}}{\frac{5}{15}-\frac{9}{15}}
3-ისა და 5-ის უმცირესი საერთო მამრავლი არის 15. გადაიყვანეთ \frac{1}{3} და \frac{3}{5} წილადებად, რომელთა მნიშვნელია 15.
\frac{\frac{6}{5}}{\frac{5-9}{15}}
რადგან \frac{5}{15}-სა და \frac{9}{15}-ს აქვს იგივე მნიშვნელი, გამოაკელით მათი მრიცხველები.
\frac{\frac{6}{5}}{-\frac{4}{15}}
გამოაკელით 9 5-ს -4-ის მისაღებად.
\frac{6}{5}\left(-\frac{15}{4}\right)
გაყავით \frac{6}{5} -\frac{4}{15}-ზე \frac{6}{5}-ის გამრავლებით -\frac{4}{15}-ის შექცეულ სიდიდეზე.
\frac{6\left(-15\right)}{5\times 4}
გაამრავლეთ \frac{6}{5}-ზე -\frac{15}{4}-ჯერ მრიცხველის მრიცხველზე და მნიშვნელის მნიშვნელზე გამრავლების გზით.
\frac{-90}{20}
განახორციელეთ გამრავლება წილადში \frac{6\left(-15\right)}{5\times 4}.
-\frac{9}{2}
შეამცირეთ წილადი \frac{-90}{20} უმცირეს წევრებამდე გამოკლებით და 10-ის შეკვეცით.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}