შეფასება
\frac{x^{2}}{3}
დაშლა
\frac{x^{2}}{3}
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
\frac{x^{2}+7x+12}{\left(x+1\right)\left(x-1\right)}\times \frac{x^{2}\left(1+x\right)}{x+4}\times \frac{x-1}{3\left(x+3\right)}
გამოიყენეთ განაწილების თვისება, რათა გაამრავლოთ x+3 x+4-ზე და დააჯგუფეთ მსგავსი წევრები.
\frac{x^{2}+7x+12}{x^{2}-1}\times \frac{x^{2}\left(1+x\right)}{x+4}\times \frac{x-1}{3\left(x+3\right)}
განვიხილოთ \left(x+1\right)\left(x-1\right). გამრავლება შეიძლება გარდაიქმნას კვადრატების სხვაობად, შემდეგი წესის გამოყენებით: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. აიყვანეთ კვადრატში 1.
\frac{x^{2}+7x+12}{x^{2}-1}\times \frac{x^{2}+x^{3}}{x+4}\times \frac{x-1}{3\left(x+3\right)}
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ x^{2} 1+x-ზე.
\frac{x^{2}+7x+12}{x^{2}-1}\times \frac{x^{2}+x^{3}}{x+4}\times \frac{x-1}{3x+9}
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ 3 x+3-ზე.
\frac{\left(x^{2}+7x+12\right)\left(x^{2}+x^{3}\right)}{\left(x^{2}-1\right)\left(x+4\right)}\times \frac{x-1}{3x+9}
გაამრავლეთ \frac{x^{2}+7x+12}{x^{2}-1}-ზე \frac{x^{2}+x^{3}}{x+4}-ჯერ მრიცხველის მრიცხველზე და მნიშვნელის მნიშვნელზე გამრავლების გზით.
\frac{\left(x^{2}+7x+12\right)\left(x^{2}+x^{3}\right)\left(x-1\right)}{\left(x^{2}-1\right)\left(x+4\right)\left(3x+9\right)}
გაამრავლეთ \frac{\left(x^{2}+7x+12\right)\left(x^{2}+x^{3}\right)}{\left(x^{2}-1\right)\left(x+4\right)}-ზე \frac{x-1}{3x+9}-ჯერ მრიცხველის მრიცხველზე და მნიშვნელის მნიშვნელზე გამრავლების გზით.
\frac{\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+4\right)x^{2}}{3\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+4\right)}
აღრიცხეთ ყველა გამოსახულება, რომლიც ჯერ არ არის აღრიცხული.
\frac{x^{2}}{3}
გააბათილეთ \left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+4\right) როგორც მრიცხველში, ასევე მნიშვნელში.
\frac{x^{2}+7x+12}{\left(x+1\right)\left(x-1\right)}\times \frac{x^{2}\left(1+x\right)}{x+4}\times \frac{x-1}{3\left(x+3\right)}
გამოიყენეთ განაწილების თვისება, რათა გაამრავლოთ x+3 x+4-ზე და დააჯგუფეთ მსგავსი წევრები.
\frac{x^{2}+7x+12}{x^{2}-1}\times \frac{x^{2}\left(1+x\right)}{x+4}\times \frac{x-1}{3\left(x+3\right)}
განვიხილოთ \left(x+1\right)\left(x-1\right). გამრავლება შეიძლება გარდაიქმნას კვადრატების სხვაობად, შემდეგი წესის გამოყენებით: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. აიყვანეთ კვადრატში 1.
\frac{x^{2}+7x+12}{x^{2}-1}\times \frac{x^{2}+x^{3}}{x+4}\times \frac{x-1}{3\left(x+3\right)}
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ x^{2} 1+x-ზე.
\frac{x^{2}+7x+12}{x^{2}-1}\times \frac{x^{2}+x^{3}}{x+4}\times \frac{x-1}{3x+9}
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ 3 x+3-ზე.
\frac{\left(x^{2}+7x+12\right)\left(x^{2}+x^{3}\right)}{\left(x^{2}-1\right)\left(x+4\right)}\times \frac{x-1}{3x+9}
გაამრავლეთ \frac{x^{2}+7x+12}{x^{2}-1}-ზე \frac{x^{2}+x^{3}}{x+4}-ჯერ მრიცხველის მრიცხველზე და მნიშვნელის მნიშვნელზე გამრავლების გზით.
\frac{\left(x^{2}+7x+12\right)\left(x^{2}+x^{3}\right)\left(x-1\right)}{\left(x^{2}-1\right)\left(x+4\right)\left(3x+9\right)}
გაამრავლეთ \frac{\left(x^{2}+7x+12\right)\left(x^{2}+x^{3}\right)}{\left(x^{2}-1\right)\left(x+4\right)}-ზე \frac{x-1}{3x+9}-ჯერ მრიცხველის მრიცხველზე და მნიშვნელის მნიშვნელზე გამრავლების გზით.
\frac{\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+4\right)x^{2}}{3\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+4\right)}
აღრიცხეთ ყველა გამოსახულება, რომლიც ჯერ არ არის აღრიცხული.
\frac{x^{2}}{3}
გააბათილეთ \left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+4\right) როგორც მრიცხველში, ასევე მნიშვნელში.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}