ამოხსნა b-ისთვის
b=-5\sqrt{195}i\approx -0-69.821200219i
b=5\sqrt{195}i\approx 69.821200219i
გაზიარება
კოპირებულია ბუფერში
-20\left(85-30\right)\left(85+36\right)=11\left(b-85\right)\left(b+85\right)
ცვლადი b არ შეიძლება იყოს მნიშვნელობათაგან -85,85 არცერთის ტოლი, ვინაიდან ნულზე გაყოფა არ არის განსაზღვრული. გაამრავლეთ განტოლების ორივე მხარე 20\left(b-85\right)\left(b+85\right)-ზე, \left(85-b\right)\left(85+b\right),20-ის უმცირეს საერთო მამრავლზე.
-20\times 55\left(85+36\right)=11\left(b-85\right)\left(b+85\right)
გამოაკელით 30 85-ს 55-ის მისაღებად.
-1100\left(85+36\right)=11\left(b-85\right)\left(b+85\right)
გადაამრავლეთ -20 და 55, რათა მიიღოთ -1100.
-1100\times 121=11\left(b-85\right)\left(b+85\right)
შეკრიბეთ 85 და 36, რათა მიიღოთ 121.
-133100=11\left(b-85\right)\left(b+85\right)
გადაამრავლეთ -1100 და 121, რათა მიიღოთ -133100.
-133100=\left(11b-935\right)\left(b+85\right)
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ 11 b-85-ზე.
-133100=11b^{2}-79475
გამოიყენეთ განაწილების თვისება, რათა გაამრავლოთ 11b-935 b+85-ზე და დააჯგუფეთ მსგავსი წევრები.
11b^{2}-79475=-133100
შეუცვალეთ ადგილები ისე, რომ ყველა ცვლადი წევრები მარცხენა მხარეს აღმოჩნდეს.
11b^{2}=-133100+79475
დაამატეთ 79475 ორივე მხარეს.
11b^{2}=-53625
შეკრიბეთ -133100 და 79475, რათა მიიღოთ -53625.
b^{2}=\frac{-53625}{11}
ორივე მხარე გაყავით 11-ზე.
b^{2}=-4875
გაყავით -53625 11-ზე -4875-ის მისაღებად.
b=5\sqrt{195}i b=-5\sqrt{195}i
განტოლება ახლა ამოხსნილია.
-20\left(85-30\right)\left(85+36\right)=11\left(b-85\right)\left(b+85\right)
ცვლადი b არ შეიძლება იყოს მნიშვნელობათაგან -85,85 არცერთის ტოლი, ვინაიდან ნულზე გაყოფა არ არის განსაზღვრული. გაამრავლეთ განტოლების ორივე მხარე 20\left(b-85\right)\left(b+85\right)-ზე, \left(85-b\right)\left(85+b\right),20-ის უმცირეს საერთო მამრავლზე.
-20\times 55\left(85+36\right)=11\left(b-85\right)\left(b+85\right)
გამოაკელით 30 85-ს 55-ის მისაღებად.
-1100\left(85+36\right)=11\left(b-85\right)\left(b+85\right)
გადაამრავლეთ -20 და 55, რათა მიიღოთ -1100.
-1100\times 121=11\left(b-85\right)\left(b+85\right)
შეკრიბეთ 85 და 36, რათა მიიღოთ 121.
-133100=11\left(b-85\right)\left(b+85\right)
გადაამრავლეთ -1100 და 121, რათა მიიღოთ -133100.
-133100=\left(11b-935\right)\left(b+85\right)
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ 11 b-85-ზე.
-133100=11b^{2}-79475
გამოიყენეთ განაწილების თვისება, რათა გაამრავლოთ 11b-935 b+85-ზე და დააჯგუფეთ მსგავსი წევრები.
11b^{2}-79475=-133100
შეუცვალეთ ადგილები ისე, რომ ყველა ცვლადი წევრები მარცხენა მხარეს აღმოჩნდეს.
11b^{2}-79475+133100=0
დაამატეთ 133100 ორივე მხარეს.
11b^{2}+53625=0
შეკრიბეთ -79475 და 133100, რათა მიიღოთ 53625.
b=\frac{0±\sqrt{0^{2}-4\times 11\times 53625}}{2\times 11}
ეს განტოლება სტანდარტული ფორმისაა: ax^{2}+bx+c=0. ჩაანაცვლეთ 11-ით a, 0-ით b და 53625-ით c კვადრატულ ფორმულაში, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{0±\sqrt{-4\times 11\times 53625}}{2\times 11}
აიყვანეთ კვადრატში 0.
b=\frac{0±\sqrt{-44\times 53625}}{2\times 11}
გაამრავლეთ -4-ზე 11.
b=\frac{0±\sqrt{-2359500}}{2\times 11}
გაამრავლეთ -44-ზე 53625.
b=\frac{0±110\sqrt{195}i}{2\times 11}
აიღეთ -2359500-ის კვადრატული ფესვი.
b=\frac{0±110\sqrt{195}i}{22}
გაამრავლეთ 2-ზე 11.
b=5\sqrt{195}i
ახლა ამოხსენით განტოლება b=\frac{0±110\sqrt{195}i}{22} როცა ± პლიუსია.
b=-5\sqrt{195}i
ახლა ამოხსენით განტოლება b=\frac{0±110\sqrt{195}i}{22} როცა ± მინუსია.
b=5\sqrt{195}i b=-5\sqrt{195}i
განტოლება ახლა ამოხსნილია.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}