შეფასება
\frac{z^{2}}{9x^{4}y^{8}}
დაშლა
\frac{z^{2}}{9x^{4}y^{8}}
გაზიარება
კოპირებულია ბუფერში
\frac{3^{-2}\left(x^{3}\right)^{-2}\left(y^{5}\right)^{-2}}{\left(x^{2}y^{2}z^{2}\right)^{-1}}
დაშალეთ \left(3x^{3}y^{5}\right)^{-2}.
\frac{3^{-2}x^{-6}\left(y^{5}\right)^{-2}}{\left(x^{2}y^{2}z^{2}\right)^{-1}}
რიცხვის ხარისხის სხვა ხარისხში ასაყვანად, გადაამრავლეთ ექსპონენტები. გადაამრავლეთ 3 და -2 რომ მიიღოთ -6.
\frac{3^{-2}x^{-6}y^{-10}}{\left(x^{2}y^{2}z^{2}\right)^{-1}}
რიცხვის ხარისხის სხვა ხარისხში ასაყვანად, გადაამრავლეთ ექსპონენტები. გადაამრავლეთ 5 და -2 რომ მიიღოთ -10.
\frac{\frac{1}{9}x^{-6}y^{-10}}{\left(x^{2}y^{2}z^{2}\right)^{-1}}
გამოთვალეთ-2-ის 3 ხარისხი და მიიღეთ \frac{1}{9}.
\frac{\frac{1}{9}x^{-6}y^{-10}}{\left(x^{2}\right)^{-1}\left(y^{2}\right)^{-1}\left(z^{2}\right)^{-1}}
დაშალეთ \left(x^{2}y^{2}z^{2}\right)^{-1}.
\frac{\frac{1}{9}x^{-6}y^{-10}}{x^{-2}\left(y^{2}\right)^{-1}\left(z^{2}\right)^{-1}}
რიცხვის ხარისხის სხვა ხარისხში ასაყვანად, გადაამრავლეთ ექსპონენტები. გადაამრავლეთ 2 და -1 რომ მიიღოთ -2.
\frac{\frac{1}{9}x^{-6}y^{-10}}{x^{-2}y^{-2}\left(z^{2}\right)^{-1}}
რიცხვის ხარისხის სხვა ხარისხში ასაყვანად, გადაამრავლეთ ექსპონენტები. გადაამრავლეთ 2 და -1 რომ მიიღოთ -2.
\frac{\frac{1}{9}x^{-6}y^{-10}}{x^{-2}y^{-2}z^{-2}}
რიცხვის ხარისხის სხვა ხარისხში ასაყვანად, გადაამრავლეთ ექსპონენტები. გადაამრავლეთ 2 და -1 რომ მიიღოთ -2.
\frac{\frac{1}{9}}{z^{-2}x^{4}y^{8}}
იმავე ფუძის ჯერადი რიცხვების გასაყოფად, გამოაკელით მნიშვნელის ექსპონენტი მრიცხველის ექსპონენტს.
\frac{1}{9z^{-2}x^{4}y^{8}}
გამოხატეთ \frac{\frac{1}{9}}{z^{-2}x^{4}y^{8}} ერთიანი წილადის სახით.
\frac{3^{-2}\left(x^{3}\right)^{-2}\left(y^{5}\right)^{-2}}{\left(x^{2}y^{2}z^{2}\right)^{-1}}
დაშალეთ \left(3x^{3}y^{5}\right)^{-2}.
\frac{3^{-2}x^{-6}\left(y^{5}\right)^{-2}}{\left(x^{2}y^{2}z^{2}\right)^{-1}}
რიცხვის ხარისხის სხვა ხარისხში ასაყვანად, გადაამრავლეთ ექსპონენტები. გადაამრავლეთ 3 და -2 რომ მიიღოთ -6.
\frac{3^{-2}x^{-6}y^{-10}}{\left(x^{2}y^{2}z^{2}\right)^{-1}}
რიცხვის ხარისხის სხვა ხარისხში ასაყვანად, გადაამრავლეთ ექსპონენტები. გადაამრავლეთ 5 და -2 რომ მიიღოთ -10.
\frac{\frac{1}{9}x^{-6}y^{-10}}{\left(x^{2}y^{2}z^{2}\right)^{-1}}
გამოთვალეთ-2-ის 3 ხარისხი და მიიღეთ \frac{1}{9}.
\frac{\frac{1}{9}x^{-6}y^{-10}}{\left(x^{2}\right)^{-1}\left(y^{2}\right)^{-1}\left(z^{2}\right)^{-1}}
დაშალეთ \left(x^{2}y^{2}z^{2}\right)^{-1}.
\frac{\frac{1}{9}x^{-6}y^{-10}}{x^{-2}\left(y^{2}\right)^{-1}\left(z^{2}\right)^{-1}}
რიცხვის ხარისხის სხვა ხარისხში ასაყვანად, გადაამრავლეთ ექსპონენტები. გადაამრავლეთ 2 და -1 რომ მიიღოთ -2.
\frac{\frac{1}{9}x^{-6}y^{-10}}{x^{-2}y^{-2}\left(z^{2}\right)^{-1}}
რიცხვის ხარისხის სხვა ხარისხში ასაყვანად, გადაამრავლეთ ექსპონენტები. გადაამრავლეთ 2 და -1 რომ მიიღოთ -2.
\frac{\frac{1}{9}x^{-6}y^{-10}}{x^{-2}y^{-2}z^{-2}}
რიცხვის ხარისხის სხვა ხარისხში ასაყვანად, გადაამრავლეთ ექსპონენტები. გადაამრავლეთ 2 და -1 რომ მიიღოთ -2.
\frac{\frac{1}{9}}{z^{-2}x^{4}y^{8}}
იმავე ფუძის ჯერადი რიცხვების გასაყოფად, გამოაკელით მნიშვნელის ექსპონენტი მრიცხველის ექსპონენტს.
\frac{1}{9z^{-2}x^{4}y^{8}}
გამოხატეთ \frac{\frac{1}{9}}{z^{-2}x^{4}y^{8}} ერთიანი წილადის სახით.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}