მთავარ კონტენტზე გადასვლა
შეფასება
Tick mark Image
დიფერენცირება λ-ის მიმართ
Tick mark Image

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

\left(\frac{\lambda }{10}\right)^{2}
გადაამრავლეთ \frac{\lambda }{10} და \frac{\lambda }{10}, რათა მიიღოთ \left(\frac{\lambda }{10}\right)^{2}.
\frac{\lambda ^{2}}{10^{2}}
ჯერადით \frac{\lambda }{10}-ის გაზრდისთვის, გაზარდეთ ორივე, მრიცხველი და მნიშვნელი, ჯერადით და შემდეგ გაყავით.
\frac{\lambda ^{2}}{100}
გამოთვალეთ2-ის 10 ხარისხი და მიიღეთ 100.
\frac{1}{10}\lambda ^{1}\frac{\mathrm{d}}{\mathrm{d}\lambda }(\frac{1}{10}\lambda ^{1})+\frac{1}{10}\lambda ^{1}\frac{\mathrm{d}}{\mathrm{d}\lambda }(\frac{1}{10}\lambda ^{1})
ნებისმიერი ორი დიფერენცირებული ფუნქციისთვის, ორი ფუნქციის ნამრავლის დერივატივი არის პირველ ფუნქციაზე გამრავლებული მრიცხველის დერივატივი პლუს მეორე ფუნქციაზე გამრავლებული პირველი ფუნქციის დერივატივი.
\frac{1}{10}\lambda ^{1}\times \frac{1}{10}\lambda ^{1-1}+\frac{1}{10}\lambda ^{1}\times \frac{1}{10}\lambda ^{1-1}
პოლინომის დერივატივი არის მისი წევრების დერივატივების ჯამი. ნებისმიერი კონსტანტის დერივატივი არის 0. ax^{n}-ის დერივატივი არის nax^{n-1}.
\frac{1}{10}\lambda ^{1}\times \frac{1}{10}\lambda ^{0}+\frac{1}{10}\lambda ^{1}\times \frac{1}{10}\lambda ^{0}
გაამარტივეთ.
\frac{1}{10}\times \frac{1}{10}\lambda ^{1}+\frac{1}{10}\times \frac{1}{10}\lambda ^{1}
იმავე ფუძის ჯერადი რიცხვების გადამრავლებისთვის, შეკრიბეთ მათი ექსპონენტები.
\frac{1}{100}\lambda ^{1}+\frac{1}{100}\lambda ^{1}
გაამარტივეთ.
\frac{1+1}{100}\lambda ^{1}
დააჯგუფეთ მსგავსი წევრები.
\frac{1}{50}\lambda ^{1}
მიუმატეთ \frac{1}{100} \frac{1}{100}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების შეკრების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
\frac{1}{50}\lambda
ნებისმიერი წევრისთვის t, t^{1}=t.