შეფასება
-\frac{a^{3}b^{9}}{27}
დაშლა
-\frac{a^{3}b^{9}}{27}
გაზიარება
კოპირებულია ბუფერში
\left(\left(\frac{1}{2}a-\frac{2}{3}b\right)\left(\frac{1}{8}a^{3}+\frac{1}{2}a^{2}b+\frac{2}{3}ab^{2}+\frac{8}{27}b^{3}\right)-\left(\frac{1}{4}a^{2}-\frac{4}{9}b^{2}\right)\left(\frac{4}{9}b^{2}+\frac{1}{4}a^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
\left(p+q\right)^{3}=p^{3}+3p^{2}q+3pq^{2}+q^{3} ბინომიალური თეორემის გამოყენება \left(\frac{1}{2}a+\frac{2}{3}b\right)^{3}-ის გასაშლელად.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{4}a^{2}-\frac{4}{9}b^{2}\right)\left(\frac{4}{9}b^{2}+\frac{1}{4}a^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
გამოიყენეთ განაწილების თვისება, რათა გაამრავლოთ \frac{1}{2}a-\frac{2}{3}b \frac{1}{8}a^{3}+\frac{1}{2}a^{2}b+\frac{2}{3}ab^{2}+\frac{8}{27}b^{3}-ზე და დააჯგუფეთ მსგავსი წევრები.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\left(\frac{1}{4}a^{2}\right)^{2}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
განვიხილოთ \left(\frac{1}{4}a^{2}-\frac{4}{9}b^{2}\right)\left(\frac{4}{9}b^{2}+\frac{1}{4}a^{2}\right). გამრავლება შეიძლება გარდაიქმნას კვადრატების სხვაობად, შემდეგი წესის გამოყენებით: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\left(\frac{1}{4}\right)^{2}\left(a^{2}\right)^{2}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
დაშალეთ \left(\frac{1}{4}a^{2}\right)^{2}.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\left(\frac{1}{4}\right)^{2}a^{4}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
რიცხვის ხარისხის სხვა ხარისხში ასაყვანად, გადაამრავლეთ ექსპონენტები. გადაამრავლეთ 2 და 2 რომ მიიღოთ 4.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
გამოთვალეთ2-ის \frac{1}{4} ხარისხი და მიიღეთ \frac{1}{16}.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\left(\frac{4}{9}\right)^{2}\left(b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
დაშალეთ \left(\frac{4}{9}b^{2}\right)^{2}.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\left(\frac{4}{9}\right)^{2}b^{4}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
რიცხვის ხარისხის სხვა ხარისხში ასაყვანად, გადაამრავლეთ ექსპონენტები. გადაამრავლეთ 2 და 2 რომ მიიღოთ 4.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\frac{16}{81}b^{4}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
გამოთვალეთ2-ის \frac{4}{9} ხარისხი და მიიღეთ \frac{16}{81}.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\frac{1}{16}a^{4}+\frac{16}{81}b^{4}-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
\frac{1}{16}a^{4}-\frac{16}{81}b^{4}-ის საპირისპირო მნიშვნელობის პოვნისთვის, იპოვეთ იგი ყოველი წევრისთვის.
\left(\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}+\frac{16}{81}b^{4}-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
დააჯგუფეთ \frac{1}{16}a^{4} და -\frac{1}{16}a^{4}, რათა მიიღოთ 0.
\left(\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
დააჯგუფეთ -\frac{16}{81}b^{4} და \frac{16}{81}b^{4}, რათა მიიღოთ 0.
\left(\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{1}{6}a^{3}b-\frac{1}{27}ab^{3}\right)^{3}
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ -\frac{1}{3}ab \frac{1}{2}a^{2}+\frac{1}{9}b^{2}-ზე.
\left(-\frac{8}{27}ab^{3}-\frac{1}{27}ab^{3}\right)^{3}
დააჯგუფეთ \frac{1}{6}a^{3}b და -\frac{1}{6}a^{3}b, რათა მიიღოთ 0.
\left(-\frac{1}{3}ab^{3}\right)^{3}
დააჯგუფეთ -\frac{8}{27}ab^{3} და -\frac{1}{27}ab^{3}, რათა მიიღოთ -\frac{1}{3}ab^{3}.
\left(-\frac{1}{3}\right)^{3}a^{3}\left(b^{3}\right)^{3}
დაშალეთ \left(-\frac{1}{3}ab^{3}\right)^{3}.
\left(-\frac{1}{3}\right)^{3}a^{3}b^{9}
რიცხვის ხარისხის სხვა ხარისხში ასაყვანად, გადაამრავლეთ ექსპონენტები. გადაამრავლეთ 3 და 3 რომ მიიღოთ 9.
-\frac{1}{27}a^{3}b^{9}
გამოთვალეთ3-ის -\frac{1}{3} ხარისხი და მიიღეთ -\frac{1}{27}.
\left(\left(\frac{1}{2}a-\frac{2}{3}b\right)\left(\frac{1}{8}a^{3}+\frac{1}{2}a^{2}b+\frac{2}{3}ab^{2}+\frac{8}{27}b^{3}\right)-\left(\frac{1}{4}a^{2}-\frac{4}{9}b^{2}\right)\left(\frac{4}{9}b^{2}+\frac{1}{4}a^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
\left(p+q\right)^{3}=p^{3}+3p^{2}q+3pq^{2}+q^{3} ბინომიალური თეორემის გამოყენება \left(\frac{1}{2}a+\frac{2}{3}b\right)^{3}-ის გასაშლელად.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{4}a^{2}-\frac{4}{9}b^{2}\right)\left(\frac{4}{9}b^{2}+\frac{1}{4}a^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
გამოიყენეთ განაწილების თვისება, რათა გაამრავლოთ \frac{1}{2}a-\frac{2}{3}b \frac{1}{8}a^{3}+\frac{1}{2}a^{2}b+\frac{2}{3}ab^{2}+\frac{8}{27}b^{3}-ზე და დააჯგუფეთ მსგავსი წევრები.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\left(\frac{1}{4}a^{2}\right)^{2}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
განვიხილოთ \left(\frac{1}{4}a^{2}-\frac{4}{9}b^{2}\right)\left(\frac{4}{9}b^{2}+\frac{1}{4}a^{2}\right). გამრავლება შეიძლება გარდაიქმნას კვადრატების სხვაობად, შემდეგი წესის გამოყენებით: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\left(\frac{1}{4}\right)^{2}\left(a^{2}\right)^{2}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
დაშალეთ \left(\frac{1}{4}a^{2}\right)^{2}.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\left(\frac{1}{4}\right)^{2}a^{4}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
რიცხვის ხარისხის სხვა ხარისხში ასაყვანად, გადაამრავლეთ ექსპონენტები. გადაამრავლეთ 2 და 2 რომ მიიღოთ 4.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
გამოთვალეთ2-ის \frac{1}{4} ხარისხი და მიიღეთ \frac{1}{16}.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\left(\frac{4}{9}\right)^{2}\left(b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
დაშალეთ \left(\frac{4}{9}b^{2}\right)^{2}.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\left(\frac{4}{9}\right)^{2}b^{4}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
რიცხვის ხარისხის სხვა ხარისხში ასაყვანად, გადაამრავლეთ ექსპონენტები. გადაამრავლეთ 2 და 2 რომ მიიღოთ 4.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\frac{16}{81}b^{4}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
გამოთვალეთ2-ის \frac{4}{9} ხარისხი და მიიღეთ \frac{16}{81}.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\frac{1}{16}a^{4}+\frac{16}{81}b^{4}-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
\frac{1}{16}a^{4}-\frac{16}{81}b^{4}-ის საპირისპირო მნიშვნელობის პოვნისთვის, იპოვეთ იგი ყოველი წევრისთვის.
\left(\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}+\frac{16}{81}b^{4}-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
დააჯგუფეთ \frac{1}{16}a^{4} და -\frac{1}{16}a^{4}, რათა მიიღოთ 0.
\left(\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
დააჯგუფეთ -\frac{16}{81}b^{4} და \frac{16}{81}b^{4}, რათა მიიღოთ 0.
\left(\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{1}{6}a^{3}b-\frac{1}{27}ab^{3}\right)^{3}
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ -\frac{1}{3}ab \frac{1}{2}a^{2}+\frac{1}{9}b^{2}-ზე.
\left(-\frac{8}{27}ab^{3}-\frac{1}{27}ab^{3}\right)^{3}
დააჯგუფეთ \frac{1}{6}a^{3}b და -\frac{1}{6}a^{3}b, რათა მიიღოთ 0.
\left(-\frac{1}{3}ab^{3}\right)^{3}
დააჯგუფეთ -\frac{8}{27}ab^{3} და -\frac{1}{27}ab^{3}, რათა მიიღოთ -\frac{1}{3}ab^{3}.
\left(-\frac{1}{3}\right)^{3}a^{3}\left(b^{3}\right)^{3}
დაშალეთ \left(-\frac{1}{3}ab^{3}\right)^{3}.
\left(-\frac{1}{3}\right)^{3}a^{3}b^{9}
რიცხვის ხარისხის სხვა ხარისხში ასაყვანად, გადაამრავლეთ ექსპონენტები. გადაამრავლეთ 3 და 3 რომ მიიღოთ 9.
-\frac{1}{27}a^{3}b^{9}
გამოთვალეთ3-ის -\frac{1}{3} ხარისხი და მიიღეთ -\frac{1}{27}.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}