შეფასება
14a^{4}+2b+7
დაშლა
14a^{4}+2b+7
გაზიარება
კოპირებულია ბუფერში
\left(4-a^{2}-2\right)^{3}-\left(2a^{2}-b+1\right)^{2}+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
განვიხილოთ \left(2-a\right)\left(2+a\right). გამრავლება შეიძლება გარდაიქმნას კვადრატების სხვაობად, შემდეგი წესის გამოყენებით: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. აიყვანეთ კვადრატში 2.
\left(2-a^{2}\right)^{3}-\left(2a^{2}-b+1\right)^{2}+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
გამოაკელით 2 4-ს 2-ის მისაღებად.
8-12a^{2}+6\left(a^{2}\right)^{2}-\left(a^{2}\right)^{3}-\left(2a^{2}-b+1\right)^{2}+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
\left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3} ბინომიალური თეორემის გამოყენება \left(2-a^{2}\right)^{3}-ის გასაშლელად.
8-12a^{2}+6a^{4}-\left(a^{2}\right)^{3}-\left(2a^{2}-b+1\right)^{2}+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
რიცხვის ხარისხის სხვა ხარისხში ასაყვანად, გადაამრავლეთ ექსპონენტები. გადაამრავლეთ 2 და 2 რომ მიიღოთ 4.
8-12a^{2}+6a^{4}-a^{6}-\left(2a^{2}-b+1\right)^{2}+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
რიცხვის ხარისხის სხვა ხარისხში ასაყვანად, გადაამრავლეთ ექსპონენტები. გადაამრავლეთ 2 და 3 რომ მიიღოთ 6.
8-12a^{2}+6a^{4}-a^{6}-\left(4a^{4}+4a^{2}+b^{2}-4ba^{2}-2b+1\right)+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
აიყვანეთ კვადრატში 2a^{2}-b+1.
8-12a^{2}+6a^{4}-a^{6}-4a^{4}-4a^{2}-b^{2}+4ba^{2}+2b-1+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
4a^{4}+4a^{2}+b^{2}-4ba^{2}-2b+1-ის საპირისპირო მნიშვნელობის პოვნისთვის, იპოვეთ იგი ყოველი წევრისთვის.
8-12a^{2}+2a^{4}-a^{6}-4a^{2}-b^{2}+4ba^{2}+2b-1+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
დააჯგუფეთ 6a^{4} და -4a^{4}, რათა მიიღოთ 2a^{4}.
8-16a^{2}+2a^{4}-a^{6}-b^{2}+4ba^{2}+2b-1+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
დააჯგუფეთ -12a^{2} და -4a^{2}, რათა მიიღოთ -16a^{2}.
7-16a^{2}+2a^{4}-a^{6}-b^{2}+4ba^{2}+2b+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
გამოაკელით 1 8-ს 7-ის მისაღებად.
7-16a^{2}+2a^{4}-a^{6}-b^{2}+4ba^{2}+2b+a^{2}\left(\left(a^{2}\right)^{2}+8a^{2}+16\right)+\left(b-2a^{2}\right)^{2}
\left(p+q\right)^{2}=p^{2}+2pq+q^{2} ბინომიალური თეორემის გამოყენება \left(a^{2}+4\right)^{2}-ის გასაშლელად.
7-16a^{2}+2a^{4}-a^{6}-b^{2}+4ba^{2}+2b+a^{2}\left(a^{4}+8a^{2}+16\right)+\left(b-2a^{2}\right)^{2}
რიცხვის ხარისხის სხვა ხარისხში ასაყვანად, გადაამრავლეთ ექსპონენტები. გადაამრავლეთ 2 და 2 რომ მიიღოთ 4.
7-16a^{2}+2a^{4}-a^{6}-b^{2}+4ba^{2}+2b+a^{6}+8a^{4}+16a^{2}+\left(b-2a^{2}\right)^{2}
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ a^{2} a^{4}+8a^{2}+16-ზე.
7-16a^{2}+2a^{4}-b^{2}+4ba^{2}+2b+8a^{4}+16a^{2}+\left(b-2a^{2}\right)^{2}
დააჯგუფეთ -a^{6} და a^{6}, რათა მიიღოთ 0.
7-16a^{2}+10a^{4}-b^{2}+4ba^{2}+2b+16a^{2}+\left(b-2a^{2}\right)^{2}
დააჯგუფეთ 2a^{4} და 8a^{4}, რათა მიიღოთ 10a^{4}.
7+10a^{4}-b^{2}+4ba^{2}+2b+\left(b-2a^{2}\right)^{2}
დააჯგუფეთ -16a^{2} და 16a^{2}, რათა მიიღოთ 0.
7+10a^{4}-b^{2}+4ba^{2}+2b+b^{2}-4ba^{2}+4\left(a^{2}\right)^{2}
\left(p-q\right)^{2}=p^{2}-2pq+q^{2} ბინომიალური თეორემის გამოყენება \left(b-2a^{2}\right)^{2}-ის გასაშლელად.
7+10a^{4}-b^{2}+4ba^{2}+2b+b^{2}-4ba^{2}+4a^{4}
რიცხვის ხარისხის სხვა ხარისხში ასაყვანად, გადაამრავლეთ ექსპონენტები. გადაამრავლეთ 2 და 2 რომ მიიღოთ 4.
7+10a^{4}+4ba^{2}+2b-4ba^{2}+4a^{4}
დააჯგუფეთ -b^{2} და b^{2}, რათა მიიღოთ 0.
7+10a^{4}+2b+4a^{4}
დააჯგუფეთ 4ba^{2} და -4ba^{2}, რათა მიიღოთ 0.
7+14a^{4}+2b
დააჯგუფეთ 10a^{4} და 4a^{4}, რათა მიიღოთ 14a^{4}.
\left(4-a^{2}-2\right)^{3}-\left(2a^{2}-b+1\right)^{2}+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
განვიხილოთ \left(2-a\right)\left(2+a\right). გამრავლება შეიძლება გარდაიქმნას კვადრატების სხვაობად, შემდეგი წესის გამოყენებით: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. აიყვანეთ კვადრატში 2.
\left(2-a^{2}\right)^{3}-\left(2a^{2}-b+1\right)^{2}+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
გამოაკელით 2 4-ს 2-ის მისაღებად.
8-12a^{2}+6\left(a^{2}\right)^{2}-\left(a^{2}\right)^{3}-\left(2a^{2}-b+1\right)^{2}+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
\left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3} ბინომიალური თეორემის გამოყენება \left(2-a^{2}\right)^{3}-ის გასაშლელად.
8-12a^{2}+6a^{4}-\left(a^{2}\right)^{3}-\left(2a^{2}-b+1\right)^{2}+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
რიცხვის ხარისხის სხვა ხარისხში ასაყვანად, გადაამრავლეთ ექსპონენტები. გადაამრავლეთ 2 და 2 რომ მიიღოთ 4.
8-12a^{2}+6a^{4}-a^{6}-\left(2a^{2}-b+1\right)^{2}+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
რიცხვის ხარისხის სხვა ხარისხში ასაყვანად, გადაამრავლეთ ექსპონენტები. გადაამრავლეთ 2 და 3 რომ მიიღოთ 6.
8-12a^{2}+6a^{4}-a^{6}-\left(4a^{4}+4a^{2}+b^{2}-4ba^{2}-2b+1\right)+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
აიყვანეთ კვადრატში 2a^{2}-b+1.
8-12a^{2}+6a^{4}-a^{6}-4a^{4}-4a^{2}-b^{2}+4ba^{2}+2b-1+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
4a^{4}+4a^{2}+b^{2}-4ba^{2}-2b+1-ის საპირისპირო მნიშვნელობის პოვნისთვის, იპოვეთ იგი ყოველი წევრისთვის.
8-12a^{2}+2a^{4}-a^{6}-4a^{2}-b^{2}+4ba^{2}+2b-1+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
დააჯგუფეთ 6a^{4} და -4a^{4}, რათა მიიღოთ 2a^{4}.
8-16a^{2}+2a^{4}-a^{6}-b^{2}+4ba^{2}+2b-1+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
დააჯგუფეთ -12a^{2} და -4a^{2}, რათა მიიღოთ -16a^{2}.
7-16a^{2}+2a^{4}-a^{6}-b^{2}+4ba^{2}+2b+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
გამოაკელით 1 8-ს 7-ის მისაღებად.
7-16a^{2}+2a^{4}-a^{6}-b^{2}+4ba^{2}+2b+a^{2}\left(\left(a^{2}\right)^{2}+8a^{2}+16\right)+\left(b-2a^{2}\right)^{2}
\left(p+q\right)^{2}=p^{2}+2pq+q^{2} ბინომიალური თეორემის გამოყენება \left(a^{2}+4\right)^{2}-ის გასაშლელად.
7-16a^{2}+2a^{4}-a^{6}-b^{2}+4ba^{2}+2b+a^{2}\left(a^{4}+8a^{2}+16\right)+\left(b-2a^{2}\right)^{2}
რიცხვის ხარისხის სხვა ხარისხში ასაყვანად, გადაამრავლეთ ექსპონენტები. გადაამრავლეთ 2 და 2 რომ მიიღოთ 4.
7-16a^{2}+2a^{4}-a^{6}-b^{2}+4ba^{2}+2b+a^{6}+8a^{4}+16a^{2}+\left(b-2a^{2}\right)^{2}
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ a^{2} a^{4}+8a^{2}+16-ზე.
7-16a^{2}+2a^{4}-b^{2}+4ba^{2}+2b+8a^{4}+16a^{2}+\left(b-2a^{2}\right)^{2}
დააჯგუფეთ -a^{6} და a^{6}, რათა მიიღოთ 0.
7-16a^{2}+10a^{4}-b^{2}+4ba^{2}+2b+16a^{2}+\left(b-2a^{2}\right)^{2}
დააჯგუფეთ 2a^{4} და 8a^{4}, რათა მიიღოთ 10a^{4}.
7+10a^{4}-b^{2}+4ba^{2}+2b+\left(b-2a^{2}\right)^{2}
დააჯგუფეთ -16a^{2} და 16a^{2}, რათა მიიღოთ 0.
7+10a^{4}-b^{2}+4ba^{2}+2b+b^{2}-4ba^{2}+4\left(a^{2}\right)^{2}
\left(p-q\right)^{2}=p^{2}-2pq+q^{2} ბინომიალური თეორემის გამოყენება \left(b-2a^{2}\right)^{2}-ის გასაშლელად.
7+10a^{4}-b^{2}+4ba^{2}+2b+b^{2}-4ba^{2}+4a^{4}
რიცხვის ხარისხის სხვა ხარისხში ასაყვანად, გადაამრავლეთ ექსპონენტები. გადაამრავლეთ 2 და 2 რომ მიიღოთ 4.
7+10a^{4}+4ba^{2}+2b-4ba^{2}+4a^{4}
დააჯგუფეთ -b^{2} და b^{2}, რათა მიიღოთ 0.
7+10a^{4}+2b+4a^{4}
დააჯგუფეთ 4ba^{2} და -4ba^{2}, რათა მიიღოთ 0.
7+14a^{4}+2b
დააჯგუფეთ 10a^{4} და 4a^{4}, რათა მიიღოთ 14a^{4}.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}