შეფასება
z = \frac{1}{3} = 0.3333333333333333
დიფერენცირება z-ის მიმართ
1
გაზიარება
კოპირებულია ბუფერში
\int z+t^{2}\mathrm{d}t
თავდაპირველად შეაფასეთ განუსაზღვრელი ინტეგრალი.
\int z\mathrm{d}t+\int t^{2}\mathrm{d}t
მოახდინეთ ჯამური მნიშვნელობის სათითაოდ გაინტეგრალება.
zt+\int t^{2}\mathrm{d}t
იპოვეთz-ის ინტეგრალი, ზოგადი ინტეგრალების ცხრილის გამოყენებით, წესი \int a\mathrm{d}t=at.
zt+\frac{t^{3}}{3}
რადგან\int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int t^{2}\mathrm{d}t უნდა ჩაანაცვლოთ \frac{t^{3}}{3}-ით.
z\times 1+\frac{1^{3}}{3}-\left(z\times 0+\frac{0^{3}}{3}\right)
განსაზღვრული ინტეგრალი წარმოადგენს გამოსახულების ანტიდერივატივს, შეფასებულს ინტეგრირების ზედა ზღვარზე, მინუს ანტიდერივატივი, შეფასებული ინტეგრირების ქვედა ზღვარზე.
z+\frac{1}{3}
გაამარტივეთ.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}