მთავარ კონტენტზე გადასვლა
შეფასება
Tick mark Image

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

\int t^{2}\mathrm{d}t
თავდაპირველად შეაფასეთ განუსაზღვრელი ინტეგრალი.
\frac{t^{3}}{3}
რადგან\int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int t^{2}\mathrm{d}t უნდა ჩაანაცვლოთ \frac{t^{3}}{3}-ით.
\frac{1^{3}}{3}-\frac{0^{3}}{3}
განსაზღვრული ინტეგრალი წარმოადგენს გამოსახულების ანტიდერივატივს, შეფასებულს ინტეგრირების ზედა ზღვარზე, მინუს ანტიდერივატივი, შეფასებული ინტეგრირების ქვედა ზღვარზე.
\frac{1}{3}
გაამარტივეთ.