メインコンテンツに移動します。
Microsoft
|
Math Solver
解
演習
遊ぶ
トピック
代数入門
平均
並数
最大公約数
最小公倍数
演算の順序
分数
混合分数
素因数分解
指数
根
代数
同類項をまとめる
変数を解く
因数
展開する
分数を求める
線形方程式
二次方程式
不等式
方程式のシステム
行列
三角法
簡約する
評価
グラフ
方程式を解く
微積分
導関数
積分
極限値
代数入力
三角法の入力
微積分入力
Matrix の入力
解
演習
遊ぶ
トピック
代数入門
平均
並数
最大公約数
最小公倍数
演算の順序
分数
混合分数
素因数分解
指数
根
代数
同類項をまとめる
変数を解く
因数
展開する
分数を求める
線形方程式
二次方程式
不等式
方程式のシステム
行列
三角法
簡約する
評価
グラフ
方程式を解く
微積分
導関数
積分
極限値
代数入力
三角法の入力
微積分入力
Matrix の入力
基本的な
代数
三角法
微積分
統計
行列
文字
計算
3a^{2}
a で微分する
6a
クイズ
Algebra
\sqrt{3} \times \sqrt{3a^4}
Web 検索からの類似の問題
Simplify? \displaystyle\sqrt{{8}}\times\sqrt{{{48}^{{3}}}}
https://socratic.org/questions/59e559a97c01496bf2104ce3
\displaystyle\sqrt{{8}}\times\sqrt{{{48}^{{3}}}}={384}\sqrt{{6}} Explanation: \displaystyle\sqrt{{8}}\times\sqrt{{{48}^{{3}}}} Because both terms are under a square root sign, we can ...
How do you simplify \displaystyle{5}\sqrt{{{9}{t}^{{2}}}}\times{5}\sqrt{{{2}{t}}} ?
https://socratic.org/questions/how-do-you-simplify-5sqrt-9t-2-times5-sqrt-2t
See a solution process below: Explanation: First, simplify the radical on the left: \displaystyle{\left({5}\times{3}{t}\right)}\times{5}\sqrt{{{2}{t}}}\Rightarrow \displaystyle{15}{t}\times{5}\sqrt{{{2}{t}}}\Rightarrow ...
How do you simplify \displaystyle{3}\sqrt{{{5}{c}}}\times\sqrt{{15}}^{{3}} ?
https://socratic.org/questions/how-do-you-simplify-3sqrt-5c-times-sqrt15-3
\displaystyle{225}\sqrt{{{3}{c}}} Explanation: \displaystyle{3}\sqrt{{{5}{c}}}\sqrt{{{15}}}^{{3}} First, we can simplify \displaystyle\sqrt{{{15}}}^{{3}} . \displaystyle\sqrt{{{15}}}^{{3}}=\sqrt{{15}}\cdot\sqrt{{15}}\cdot\sqrt{{15}}={15}\cdot\sqrt{{15}} ...
Simplifying indices with surds
https://math.stackexchange.com/questions/1986172/simplifying-indices-with-surds
One way is to note that \left( \sqrt t \right)^3=t^{\frac 32} and similarly for the other one. Then when you multiply terms you add exponents
range of m such that the equation |x^2-3x+2|=mx has 4 real answers.
https://math.stackexchange.com/questions/1259271/range-of-m-such-that-the-equation-x2-3x2-mx-has-4-real-answers
There is some positive value m such that y=mx is tangent to y=-(x^2-3x+2). This value must make 0 the discriminant of the equation x^2-3x+2=-mx That is, m^2-6m+1=0 The least root of ...
Prove that there exists irrational numbers p and q such that p^{q} is rational
https://math.stackexchange.com/q/2883337
The irrationality of \sqrt 2^{\sqrt 2} (in fact, its transcendence) follows immediately from the Gelfond Schneider Theorem . This was the issue that motivated Hilbert's 7^{th} Problem. The ...
その他の 項目
共有
コピー
クリップボードにコピー済み
類似問題
\sqrt{40}
\sqrt{99a^3}
\sqrt{\frac{16}{25}}
\sqrt{3} \times \sqrt{3a^4}
\sqrt{\sqrt{256a^8}}
\sqrt{196}
トップに戻る