Salta al contenuto principale
Microsoft
|
Math Solver
Risolvi
Esercizio
Giocare
Argomenti
Pre-Algebra
Significato
Modalità
Il più grande fattore comune
Minimo comune multiplo
Ordine delle operazioni
Frazioni
Frazioni miste
Scomposizione in fattori primi
Esponenti
Radicali
Algebra
Combinazione di termini simili
Risolvere una variabile
Fattore
Espandi
Calcolo delle frazioni
Equazioni lineari
Equazioni di secondo grado
Disparità
Sistemi di equazioni
Matrici
Trigonometria
Semplificare
Calcolare
Grafici
Risolvi equazioni
Analisi matematica
Derivate
Integrali
Limiti
Input di algebra
Ingressi trigonometrici
Input di calcolo
Ingressi matrice
Risolvi
Esercizio
Giocare
Argomenti
Pre-Algebra
Significato
Modalità
Il più grande fattore comune
Minimo comune multiplo
Ordine delle operazioni
Frazioni
Frazioni miste
Scomposizione in fattori primi
Esponenti
Radicali
Algebra
Combinazione di termini simili
Risolvere una variabile
Fattore
Espandi
Calcolo delle frazioni
Equazioni lineari
Equazioni di secondo grado
Disparità
Sistemi di equazioni
Matrici
Trigonometria
Semplificare
Calcolare
Grafici
Risolvi equazioni
Analisi matematica
Derivate
Integrali
Limiti
Input di algebra
Ingressi trigonometrici
Input di calcolo
Ingressi matrice
Base
algebra
Trigonometria
Analisi matematica
statistiche
matrici
Personaggi
Trova x
x=\pi n_{1}+\frac{\pi }{4}
n_{1}\in \mathrm{Z}
Grafico
Traccia entrambi i lati in 2D
Traccia in 2D
Quiz
Trigonometry
5 problemi simili a:
\sin ( x ) - cos ( x ) = 0
Problemi simili da ricerca Web
Solve \displaystyle{\sin{{x}}}-{\cos{{x}}}={0} ?
https://socratic.org/questions/58f66b0eb72cff6d065f28c0
\displaystyle{x}=\frac{\pi}{{4}}+{n}\pi Explanation: We have: \displaystyle{\sin{{x}}}-{\cos{{x}}}={0} Which we can rearrange as follows: \displaystyle\therefore{\sin{{x}}}={\cos{{x}}} ...
I confused with trigonometry. \sin x - \cos x = 1
https://math.stackexchange.com/q/2837121
\frac{1}{\sqrt2}\sin{x}-\frac{1}{\sqrt2}\cos{x}=\frac{1}{\sqrt2} or \sin\left(x-45^{\circ}\right)=\sin45^{\circ}, which gives x-45^{\circ}=45^{\circ}+360^{\circ}k, where k is an integer ...
How do you solve \displaystyle{\sin{{2}}}{x}-{\cos{{x}}}={0} ?
https://socratic.org/questions/how-do-you-solve-sin-2x-cos-x-0
Use the important double angle identity \displaystyle{\sin{{2}}}{x}={2}{\sin{{x}}}{\cos{{x}}} to start the solving process. Explanation: \displaystyle{2}{\sin{{x}}}{\cos{{x}}}-{\cos{{x}}}={0} ...
How to solve \sin 3x - \cos x = 0
https://www.quora.com/How-do-I-solve-sin-3x-cos-x-0
\begin{align} &\ \ \sin 3x - \cos x = 0 \\ \Leftrightarrow &\ \ \sin 3x - \sin \left( \dfrac{\pi}{2}-x \right) = 0 \\ \Leftrightarrow &\ \ 2 \cos\dfrac{3x + \left( \frac{\pi}{2}-x \right)}{2} \sin\dfrac{3x - \left( \frac{\pi}{2}-x \right)}{2} = 0 \\ \Leftrightarrow &\ \ 2 \cos \dfrac{2x + \frac{\pi}{2}}{2} \sin \dfrac{4x - \frac{\pi}{2}}{2} = 0 \\ \Leftrightarrow &\ \ \dfrac{2x + \frac{\pi}{2}}{2} = \dfrac{\pi}{2} + k\pi, k \in \mathbb{Z} \text{ or } \dfrac{4x - \frac{\pi}{2}}{2} = k\pi, k \in \mathbb{Z} \\ \Leftrightarrow &\ \ x = \dfrac{\pi}{4} + k\pi, k \in \mathbb{Z} \text{ or } x = \dfrac{\pi}{8} + \dfrac{k\pi}{2}, k \in \mathbb{Z} \end{align}
Find the general solution to \sin(4x)-\cos(x)=0 [closed]
https://math.stackexchange.com/questions/1735307/find-the-general-solution-to-sin4x-cosx-0
\sin(4x)−\cos(x)=0 2\sin(2x)\cos(2x)-\cos(x)=0 4\sin(x)\cos(x)(1-2\sin^2(x))-\cos(x)=0 One possible solution is \cos(x)=0 4\sin(x)(1-2\sin^2(x))=1 8\sin^3(x)-4\sin(x)+1=0 Now, let \sin(x)=m ...
Prove that \sin x - x\cos x = 0 has only one solution in [-\frac{\pi}{2}, \frac{\pi}{2}]
https://math.stackexchange.com/q/1355080/166535
Let f(x)=\sin x-x\cos x. You have f'(x)=x\sin x. Since \sin x has the same sign as x for x\in[-\pi/2,\pi/2], we know that f'(x)\geq0 in this interval and f'(x)>0 for x\in[-\pi/2,\pi/2]\setminus\{0\} ...
Altri Elementi
Condividi
Copia
Copiato negli Appunti
Problemi analoghi
\cos ( 3x + \pi ) = 0.5
\sin ( x ) = 1
\sin ( x ) - cos ( x ) = 0
\sin ( x ) + 2 = 3
{ \tan ( x ) } ^ {2} = 4
Torna a inizio pagina