Trova j
j=\frac{8\left(y_{j}-225\right)}{7}
Trova y_j
y_{j}=\frac{7j}{8}+225
Condividi
Copiato negli Appunti
8y_{j}-1736=7j+64
Moltiplica entrambi i lati dell'equazione per 8.
7j+64=8y_{j}-1736
Scambia i lati in modo che i termini variabili si trovino sul lato sinistro.
7j=8y_{j}-1736-64
Sottrai 64 da entrambi i lati.
7j=8y_{j}-1800
Sottrai 64 da -1736 per ottenere -1800.
\frac{7j}{7}=\frac{8y_{j}-1800}{7}
Dividi entrambi i lati per 7.
j=\frac{8y_{j}-1800}{7}
La divisione per 7 annulla la moltiplicazione per 7.
8y_{j}-1736=7j+64
Moltiplica entrambi i lati dell'equazione per 8.
8y_{j}=7j+64+1736
Aggiungi 1736 a entrambi i lati.
8y_{j}=7j+1800
E 64 e 1736 per ottenere 1800.
\frac{8y_{j}}{8}=\frac{7j+1800}{8}
Dividi entrambi i lati per 8.
y_{j}=\frac{7j+1800}{8}
La divisione per 8 annulla la moltiplicazione per 8.
y_{j}=\frac{7j}{8}+225
Dividi 7j+1800 per 8.
Esempi
Equazione quadratica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equazione lineare
y = 3x + 4
Aritmetica
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equazione simultanea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenziazione
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazione
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}