Trova y
y=1
y=0
Grafico
Condividi
Copiato negli Appunti
y\left(y-1\right)=0
Scomponi y in fattori.
y=0 y=1
Per trovare soluzioni di equazione, risolvere y=0 e y-1=0.
y^{2}-y=0
Tutte le equazioni nel formato ax^{2}+bx+c=0 possono essere risolti usando la formula risolutiva per equazioni di secondo grado: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La formula risolutiva per equazioni di secondo grado fornisce due soluzioni, una quando ± è un'addizione e l'altra quando è una sottrazione.
y=\frac{-\left(-1\right)±\sqrt{1}}{2}
Questa equazione è nel formato standard: ax^{2}+bx+c=0. Sostituisci 1 a a, -1 a b e 0 a c nella formula risolutiva per equazioni di secondo grado \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-1\right)±1}{2}
Calcola la radice quadrata di 1.
y=\frac{1±1}{2}
L'opposto di -1 è 1.
y=\frac{2}{2}
Ora risolvi l'equazione y=\frac{1±1}{2} quando ± è più. Aggiungi 1 a 1.
y=1
Dividi 2 per 2.
y=\frac{0}{2}
Ora risolvi l'equazione y=\frac{1±1}{2} quando ± è meno. Sottrai 1 da 1.
y=0
Dividi 0 per 2.
y=1 y=0
L'equazione è stata risolta.
y^{2}-y=0
Le equazioni di secondo grado come questa possono essere risolte completando il quadrato. Per completare il quadrato, l'equazione deve essere prima convertita nel formato x^{2}+bx=c.
y^{2}-y+\left(-\frac{1}{2}\right)^{2}=\left(-\frac{1}{2}\right)^{2}
Dividi -1, il coefficiente del termine x, per 2 per ottenere -\frac{1}{2}. Quindi aggiungi il quadrato di -\frac{1}{2} a entrambi i lati dell'equazione. Con questo passaggio, il lato sinistro dell'equazione diventa un quadrato perfetto.
y^{2}-y+\frac{1}{4}=\frac{1}{4}
Eleva -\frac{1}{2} al quadrato elevando al quadrato sia il numeratore che il denominatore della frazione.
\left(y-\frac{1}{2}\right)^{2}=\frac{1}{4}
Fattore y^{2}-y+\frac{1}{4}. In generale, quando x^{2}+bx+c è un quadrato perfetto, può sempre essere scomplicato come \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Calcola la radice quadrata di entrambi i lati dell'equazione.
y-\frac{1}{2}=\frac{1}{2} y-\frac{1}{2}=-\frac{1}{2}
Semplifica.
y=1 y=0
Aggiungi \frac{1}{2} a entrambi i lati dell'equazione.
Esempi
Equazione quadratica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equazione lineare
y = 3x + 4
Aritmetica
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equazione simultanea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenziazione
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazione
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}