Trova A (soluzione complessa)
\left\{\begin{matrix}A=-\frac{-2x^{2}+Bx-x+C-1}{x^{2}-1}\text{, }&x\neq -1\text{ and }x\neq 1\\A\in \mathrm{C}\text{, }&\left(B=4-C\text{ and }x=1\right)\text{ or }\left(B=C-2\text{ and }x=-1\right)\end{matrix}\right,
Trova B (soluzione complessa)
\left\{\begin{matrix}B=\frac{1-C+A+x+2x^{2}-Ax^{2}}{x}\text{, }&x\neq 0\\B\in \mathrm{C}\text{, }&A=C-1\text{ and }x=0\end{matrix}\right,
Trova A
\left\{\begin{matrix}A=-\frac{-2x^{2}+Bx-x+C-1}{x^{2}-1}\text{, }&|x|\neq 1\\A\in \mathrm{R}\text{, }&\left(B=C-2\text{ and }x=-1\right)\text{ or }\left(B=4-C\text{ and }x=1\right)\end{matrix}\right,
Trova B
\left\{\begin{matrix}B=\frac{1-C+A+x+2x^{2}-Ax^{2}}{x}\text{, }&x\neq 0\\B\in \mathrm{R}\text{, }&A=C-1\text{ and }x=0\end{matrix}\right,
Grafico
Condividi
Copiato negli Appunti
x^{4}+x^{2}+x+1=x^{4}-x^{2}+Ax^{2}-A+Bx+C
Usa la proprietà distributiva per moltiplicare x^{2}+A per x^{2}-1.
x^{4}-x^{2}+Ax^{2}-A+Bx+C=x^{4}+x^{2}+x+1
Scambia i lati in modo che i termini variabili si trovino sul lato sinistro.
-x^{2}+Ax^{2}-A+Bx+C=x^{4}+x^{2}+x+1-x^{4}
Sottrai x^{4} da entrambi i lati.
-x^{2}+Ax^{2}-A+Bx+C=x^{2}+x+1
Combina x^{4} e -x^{4} per ottenere 0.
Ax^{2}-A+Bx+C=x^{2}+x+1+x^{2}
Aggiungi x^{2} a entrambi i lati.
Ax^{2}-A+Bx+C=2x^{2}+x+1
Combina x^{2} e x^{2} per ottenere 2x^{2}.
Ax^{2}-A+C=2x^{2}+x+1-Bx
Sottrai Bx da entrambi i lati.
Ax^{2}-A=2x^{2}+x+1-Bx-C
Sottrai C da entrambi i lati.
\left(x^{2}-1\right)A=2x^{2}+x+1-Bx-C
Combina tutti i termini contenenti A.
\left(x^{2}-1\right)A=2x^{2}-Bx+x-C+1
L'equazione è in formato standard.
\frac{\left(x^{2}-1\right)A}{x^{2}-1}=\frac{2x^{2}-Bx+x-C+1}{x^{2}-1}
Dividi entrambi i lati per x^{2}-1.
A=\frac{2x^{2}-Bx+x-C+1}{x^{2}-1}
La divisione per x^{2}-1 annulla la moltiplicazione per x^{2}-1.
x^{4}+x^{2}+x+1=x^{4}-x^{2}+Ax^{2}-A+Bx+C
Usa la proprietà distributiva per moltiplicare x^{2}+A per x^{2}-1.
x^{4}-x^{2}+Ax^{2}-A+Bx+C=x^{4}+x^{2}+x+1
Scambia i lati in modo che i termini variabili si trovino sul lato sinistro.
-x^{2}+Ax^{2}-A+Bx+C=x^{4}+x^{2}+x+1-x^{4}
Sottrai x^{4} da entrambi i lati.
-x^{2}+Ax^{2}-A+Bx+C=x^{2}+x+1
Combina x^{4} e -x^{4} per ottenere 0.
Ax^{2}-A+Bx+C=x^{2}+x+1+x^{2}
Aggiungi x^{2} a entrambi i lati.
Ax^{2}-A+Bx+C=2x^{2}+x+1
Combina x^{2} e x^{2} per ottenere 2x^{2}.
-A+Bx+C=2x^{2}+x+1-Ax^{2}
Sottrai Ax^{2} da entrambi i lati.
Bx+C=2x^{2}+x+1-Ax^{2}+A
Aggiungi A a entrambi i lati.
Bx=2x^{2}+x+1-Ax^{2}+A-C
Sottrai C da entrambi i lati.
Bx=-Ax^{2}+2x^{2}+x+A-C+1
Riordina i termini.
xB=1-C+A+x+2x^{2}-Ax^{2}
L'equazione è in formato standard.
\frac{xB}{x}=\frac{1-C+A+x+2x^{2}-Ax^{2}}{x}
Dividi entrambi i lati per x.
B=\frac{1-C+A+x+2x^{2}-Ax^{2}}{x}
La divisione per x annulla la moltiplicazione per x.
x^{4}+x^{2}+x+1=x^{4}-x^{2}+Ax^{2}-A+Bx+C
Usa la proprietà distributiva per moltiplicare x^{2}+A per x^{2}-1.
x^{4}-x^{2}+Ax^{2}-A+Bx+C=x^{4}+x^{2}+x+1
Scambia i lati in modo che i termini variabili si trovino sul lato sinistro.
-x^{2}+Ax^{2}-A+Bx+C=x^{4}+x^{2}+x+1-x^{4}
Sottrai x^{4} da entrambi i lati.
-x^{2}+Ax^{2}-A+Bx+C=x^{2}+x+1
Combina x^{4} e -x^{4} per ottenere 0.
Ax^{2}-A+Bx+C=x^{2}+x+1+x^{2}
Aggiungi x^{2} a entrambi i lati.
Ax^{2}-A+Bx+C=2x^{2}+x+1
Combina x^{2} e x^{2} per ottenere 2x^{2}.
Ax^{2}-A+C=2x^{2}+x+1-Bx
Sottrai Bx da entrambi i lati.
Ax^{2}-A=2x^{2}+x+1-Bx-C
Sottrai C da entrambi i lati.
\left(x^{2}-1\right)A=2x^{2}+x+1-Bx-C
Combina tutti i termini contenenti A.
\left(x^{2}-1\right)A=2x^{2}-Bx+x-C+1
L'equazione è in formato standard.
\frac{\left(x^{2}-1\right)A}{x^{2}-1}=\frac{2x^{2}-Bx+x-C+1}{x^{2}-1}
Dividi entrambi i lati per x^{2}-1.
A=\frac{2x^{2}-Bx+x-C+1}{x^{2}-1}
La divisione per x^{2}-1 annulla la moltiplicazione per x^{2}-1.
x^{4}+x^{2}+x+1=x^{4}-x^{2}+Ax^{2}-A+Bx+C
Usa la proprietà distributiva per moltiplicare x^{2}+A per x^{2}-1.
x^{4}-x^{2}+Ax^{2}-A+Bx+C=x^{4}+x^{2}+x+1
Scambia i lati in modo che i termini variabili si trovino sul lato sinistro.
-x^{2}+Ax^{2}-A+Bx+C=x^{4}+x^{2}+x+1-x^{4}
Sottrai x^{4} da entrambi i lati.
-x^{2}+Ax^{2}-A+Bx+C=x^{2}+x+1
Combina x^{4} e -x^{4} per ottenere 0.
Ax^{2}-A+Bx+C=x^{2}+x+1+x^{2}
Aggiungi x^{2} a entrambi i lati.
Ax^{2}-A+Bx+C=2x^{2}+x+1
Combina x^{2} e x^{2} per ottenere 2x^{2}.
-A+Bx+C=2x^{2}+x+1-Ax^{2}
Sottrai Ax^{2} da entrambi i lati.
Bx+C=2x^{2}+x+1-Ax^{2}+A
Aggiungi A a entrambi i lati.
Bx=2x^{2}+x+1-Ax^{2}+A-C
Sottrai C da entrambi i lati.
Bx=-Ax^{2}+2x^{2}+x+A-C+1
Riordina i termini.
xB=1-C+A+x+2x^{2}-Ax^{2}
L'equazione è in formato standard.
\frac{xB}{x}=\frac{1-C+A+x+2x^{2}-Ax^{2}}{x}
Dividi entrambi i lati per x.
B=\frac{1-C+A+x+2x^{2}-Ax^{2}}{x}
La divisione per x annulla la moltiplicazione per x.
Esempi
Equazione quadratica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equazione lineare
y = 3x + 4
Aritmetica
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equazione simultanea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenziazione
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazione
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}