Salta al contenuto principale
Scomponi in fattori
Tick mark Image
Calcola
Tick mark Image
Grafico

Problemi simili da ricerca Web

Condividi

a+b=-7 ab=1\times 6=6
Fattorizza l'espressione raggruppandola. Per prima cosa, è necessario riscrivere l'espressione come x^{2}+ax+bx+6. Per trovare a e b, configurare un sistema da risolvere.
-1,-6 -2,-3
Poiché ab è positivo, a e b hanno lo stesso segno. Poiché a+b è negativo, a e b sono entrambi negativi. Elenca tutte le coppie di numeri interi di questo tipo che danno come prodotto 6.
-1-6=-7 -2-3=-5
Calcola la somma di ogni coppia.
a=-6 b=-1
La soluzione è la coppia che restituisce -7 come somma.
\left(x^{2}-6x\right)+\left(-x+6\right)
Riscrivi x^{2}-7x+6 come \left(x^{2}-6x\right)+\left(-x+6\right).
x\left(x-6\right)-\left(x-6\right)
Fattori in x nel primo e -1 nel secondo gruppo.
\left(x-6\right)\left(x-1\right)
Fattorizza il termine comune x-6 tramite la proprietà distributiva.
x^{2}-7x+6=0
Il polinomio quadratico può essere scomposto in fattori utilizzando la trasformazione ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), dove x_{1} e x_{2} sono le soluzioni dell'equazione quadratica ax^{2}+bx+c=0.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 6}}{2}
Tutte le equazioni nel formato ax^{2}+bx+c=0 possono essere risolti usando la formula risolutiva per equazioni di secondo grado: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La formula risolutiva per equazioni di secondo grado fornisce due soluzioni, una quando ± è un'addizione e l'altra quando è una sottrazione.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 6}}{2}
Eleva -7 al quadrato.
x=\frac{-\left(-7\right)±\sqrt{49-24}}{2}
Moltiplica -4 per 6.
x=\frac{-\left(-7\right)±\sqrt{25}}{2}
Aggiungi 49 a -24.
x=\frac{-\left(-7\right)±5}{2}
Calcola la radice quadrata di 25.
x=\frac{7±5}{2}
L'opposto di -7 è 7.
x=\frac{12}{2}
Ora risolvi l'equazione x=\frac{7±5}{2} quando ± è più. Aggiungi 7 a 5.
x=6
Dividi 12 per 2.
x=\frac{2}{2}
Ora risolvi l'equazione x=\frac{7±5}{2} quando ± è meno. Sottrai 5 da 7.
x=1
Dividi 2 per 2.
x^{2}-7x+6=\left(x-6\right)\left(x-1\right)
Scomponi in fattori l'espressione originale usando ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Sostituisci x_{1} con 6 e x_{2} con 1.