Scomponi in fattori
\left(x-4\right)\left(x-2\right)
Calcola
\left(x-4\right)\left(x-2\right)
Grafico
Condividi
Copiato negli Appunti
a+b=-6 ab=1\times 8=8
Fattorizza l'espressione raggruppandola. Per prima cosa, è necessario riscrivere l'espressione come x^{2}+ax+bx+8. Per trovare a e b, configurare un sistema da risolvere.
-1,-8 -2,-4
Poiché ab è positivo, a e b hanno lo stesso segno. Poiché a+b è negativo, a e b sono entrambi negativi. Elenca tutte le coppie di numeri interi di questo tipo che danno come prodotto 8.
-1-8=-9 -2-4=-6
Calcola la somma di ogni coppia.
a=-4 b=-2
La soluzione è la coppia che restituisce -6 come somma.
\left(x^{2}-4x\right)+\left(-2x+8\right)
Riscrivi x^{2}-6x+8 come \left(x^{2}-4x\right)+\left(-2x+8\right).
x\left(x-4\right)-2\left(x-4\right)
Fattori in x nel primo e -2 nel secondo gruppo.
\left(x-4\right)\left(x-2\right)
Fattorizza il termine comune x-4 tramite la proprietà distributiva.
x^{2}-6x+8=0
Il polinomio quadratico può essere scomposto in fattori utilizzando la trasformazione ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), dove x_{1} e x_{2} sono le soluzioni dell'equazione quadratica ax^{2}+bx+c=0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 8}}{2}
Tutte le equazioni nel formato ax^{2}+bx+c=0 possono essere risolti usando la formula risolutiva per equazioni di secondo grado: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La formula risolutiva per equazioni di secondo grado fornisce due soluzioni, una quando ± è un'addizione e l'altra quando è una sottrazione.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 8}}{2}
Eleva -6 al quadrato.
x=\frac{-\left(-6\right)±\sqrt{36-32}}{2}
Moltiplica -4 per 8.
x=\frac{-\left(-6\right)±\sqrt{4}}{2}
Aggiungi 36 a -32.
x=\frac{-\left(-6\right)±2}{2}
Calcola la radice quadrata di 4.
x=\frac{6±2}{2}
L'opposto di -6 è 6.
x=\frac{8}{2}
Ora risolvi l'equazione x=\frac{6±2}{2} quando ± è più. Aggiungi 6 a 2.
x=4
Dividi 8 per 2.
x=\frac{4}{2}
Ora risolvi l'equazione x=\frac{6±2}{2} quando ± è meno. Sottrai 2 da 6.
x=2
Dividi 4 per 2.
x^{2}-6x+8=\left(x-4\right)\left(x-2\right)
Scomponi in fattori l'espressione originale usando ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Sostituisci x_{1} con 4 e x_{2} con 2.
Esempi
Equazione quadratica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equazione lineare
y = 3x + 4
Aritmetica
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equazione simultanea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenziazione
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazione
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}