Salta al contenuto principale
Scomponi in fattori
Tick mark Image
Calcola
Tick mark Image
Grafico

Problemi simili da ricerca Web

Condividi

a+b=5 ab=1\times 4=4
Fattorizza l'espressione raggruppandola. Per prima cosa, è necessario riscrivere l'espressione come x^{2}+ax+bx+4. Per trovare a e b, configurare un sistema da risolvere.
1,4 2,2
Poiché ab è positivo, a e b hanno lo stesso segno. Poiché a+b è positivo, a e b sono entrambi positivi. Elenca tutte le coppie di numeri interi di questo tipo che danno come prodotto 4.
1+4=5 2+2=4
Calcola la somma di ogni coppia.
a=1 b=4
La soluzione è la coppia che restituisce 5 come somma.
\left(x^{2}+x\right)+\left(4x+4\right)
Riscrivi x^{2}+5x+4 come \left(x^{2}+x\right)+\left(4x+4\right).
x\left(x+1\right)+4\left(x+1\right)
Fattori in x nel primo e 4 nel secondo gruppo.
\left(x+1\right)\left(x+4\right)
Fattorizza il termine comune x+1 tramite la proprietà distributiva.
x^{2}+5x+4=0
Il polinomio quadratico può essere scomposto in fattori utilizzando la trasformazione ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), dove x_{1} e x_{2} sono le soluzioni dell'equazione quadratica ax^{2}+bx+c=0.
x=\frac{-5±\sqrt{5^{2}-4\times 4}}{2}
Tutte le equazioni nel formato ax^{2}+bx+c=0 possono essere risolti usando la formula risolutiva per equazioni di secondo grado: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La formula risolutiva per equazioni di secondo grado fornisce due soluzioni, una quando ± è un'addizione e l'altra quando è una sottrazione.
x=\frac{-5±\sqrt{25-4\times 4}}{2}
Eleva 5 al quadrato.
x=\frac{-5±\sqrt{25-16}}{2}
Moltiplica -4 per 4.
x=\frac{-5±\sqrt{9}}{2}
Aggiungi 25 a -16.
x=\frac{-5±3}{2}
Calcola la radice quadrata di 9.
x=-\frac{2}{2}
Ora risolvi l'equazione x=\frac{-5±3}{2} quando ± è più. Aggiungi -5 a 3.
x=-1
Dividi -2 per 2.
x=-\frac{8}{2}
Ora risolvi l'equazione x=\frac{-5±3}{2} quando ± è meno. Sottrai 3 da -5.
x=-4
Dividi -8 per 2.
x^{2}+5x+4=\left(x-\left(-1\right)\right)\left(x-\left(-4\right)\right)
Scomponi in fattori l'espressione originale usando ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Sostituisci x_{1} con -1 e x_{2} con -4.
x^{2}+5x+4=\left(x+1\right)\left(x+4\right)
Semplifica tutte le espressioni del modulo p-\left(-q\right) in p+q.