Trova x (soluzione complessa)
x=\frac{-3+\sqrt{39}i}{2}\approx -1,5+3,122498999i
x=\frac{-\sqrt{39}i-3}{2}\approx -1,5-3,122498999i
Grafico
Condividi
Copiato negli Appunti
x^{2}+3x+12=0
Tutte le equazioni nel formato ax^{2}+bx+c=0 possono essere risolti usando la formula risolutiva per equazioni di secondo grado: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La formula risolutiva per equazioni di secondo grado fornisce due soluzioni, una quando ± è un'addizione e l'altra quando è una sottrazione.
x=\frac{-3±\sqrt{3^{2}-4\times 12}}{2}
Questa equazione è nel formato standard: ax^{2}+bx+c=0. Sostituisci 1 a a, 3 a b e 12 a c nella formula risolutiva per equazioni di secondo grado \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 12}}{2}
Eleva 3 al quadrato.
x=\frac{-3±\sqrt{9-48}}{2}
Moltiplica -4 per 12.
x=\frac{-3±\sqrt{-39}}{2}
Aggiungi 9 a -48.
x=\frac{-3±\sqrt{39}i}{2}
Calcola la radice quadrata di -39.
x=\frac{-3+\sqrt{39}i}{2}
Ora risolvi l'equazione x=\frac{-3±\sqrt{39}i}{2} quando ± è più. Aggiungi -3 a i\sqrt{39}.
x=\frac{-\sqrt{39}i-3}{2}
Ora risolvi l'equazione x=\frac{-3±\sqrt{39}i}{2} quando ± è meno. Sottrai i\sqrt{39} da -3.
x=\frac{-3+\sqrt{39}i}{2} x=\frac{-\sqrt{39}i-3}{2}
L'equazione è stata risolta.
x^{2}+3x+12=0
Le equazioni di secondo grado come questa possono essere risolte completando il quadrato. Per completare il quadrato, l'equazione deve essere prima convertita nel formato x^{2}+bx=c.
x^{2}+3x+12-12=-12
Sottrai 12 da entrambi i lati dell'equazione.
x^{2}+3x=-12
Sottraendo 12 da se stesso rimane 0.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-12+\left(\frac{3}{2}\right)^{2}
Dividi 3, il coefficiente del termine x, per 2 per ottenere \frac{3}{2}. Quindi aggiungi il quadrato di \frac{3}{2} a entrambi i lati dell'equazione. Con questo passaggio, il lato sinistro dell'equazione diventa un quadrato perfetto.
x^{2}+3x+\frac{9}{4}=-12+\frac{9}{4}
Eleva \frac{3}{2} al quadrato elevando al quadrato sia il numeratore che il denominatore della frazione.
x^{2}+3x+\frac{9}{4}=-\frac{39}{4}
Aggiungi -12 a \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=-\frac{39}{4}
Fattore x^{2}+3x+\frac{9}{4}. In generale, quando x^{2}+bx+c è un quadrato perfetto, può sempre essere scomplicato come \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{-\frac{39}{4}}
Calcola la radice quadrata di entrambi i lati dell'equazione.
x+\frac{3}{2}=\frac{\sqrt{39}i}{2} x+\frac{3}{2}=-\frac{\sqrt{39}i}{2}
Semplifica.
x=\frac{-3+\sqrt{39}i}{2} x=\frac{-\sqrt{39}i-3}{2}
Sottrai \frac{3}{2} da entrambi i lati dell'equazione.
Esempi
Equazione quadratica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equazione lineare
y = 3x + 4
Aritmetica
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equazione simultanea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenziazione
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazione
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}