Trova x
x=5
Grafico
Condividi
Copiato negli Appunti
x+1=\sqrt{5x+11}
Sottrai -1 da entrambi i lati dell'equazione.
\left(x+1\right)^{2}=\left(\sqrt{5x+11}\right)^{2}
Eleva al quadrato entrambi i lati dell'equazione.
x^{2}+2x+1=\left(\sqrt{5x+11}\right)^{2}
Usare il teorema binomiale \left(a+b\right)^{2}=a^{2}+2ab+b^{2} per espandere \left(x+1\right)^{2}.
x^{2}+2x+1=5x+11
Calcola \sqrt{5x+11} alla potenza di 2 e ottieni 5x+11.
x^{2}+2x+1-5x=11
Sottrai 5x da entrambi i lati.
x^{2}-3x+1=11
Combina 2x e -5x per ottenere -3x.
x^{2}-3x+1-11=0
Sottrai 11 da entrambi i lati.
x^{2}-3x-10=0
Sottrai 11 da 1 per ottenere -10.
a+b=-3 ab=-10
Per risolvere l'equazione, il fattore x^{2}-3x-10 utilizzando la formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Per trovare a e b, configurare un sistema da risolvere.
1,-10 2,-5
Poiché ab è negativo, a e b hanno i segni opposti. Poiché a+b è negativo, il numero negativo ha un valore assoluto maggiore del positivo. Elenca tutte le coppie di numeri interi di questo tipo che danno come prodotto -10.
1-10=-9 2-5=-3
Calcola la somma di ogni coppia.
a=-5 b=2
La soluzione è la coppia che restituisce -3 come somma.
\left(x-5\right)\left(x+2\right)
Riscrivi scomposte espressione \left(x+a\right)\left(x+b\right) con i valori ottenuti.
x=5 x=-2
Per trovare soluzioni di equazione, risolvere x-5=0 e x+2=0.
5=\sqrt{5\times 5+11}-1
Sostituisci 5 a x nell'equazione x=\sqrt{5x+11}-1.
5=5
Semplifica. Il valore x=5 soddisfa l'equazione.
-2=\sqrt{5\left(-2\right)+11}-1
Sostituisci -2 a x nell'equazione x=\sqrt{5x+11}-1.
-2=0
Semplifica. Il valore x=-2 non soddisfa l'equazione.
x=5
L'equazione x+1=\sqrt{5x+11} ha una soluzione univoca.
Esempi
Equazione quadratica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equazione lineare
y = 3x + 4
Aritmetica
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equazione simultanea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenziazione
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazione
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}