Salta al contenuto principale
Trova v
Tick mark Image

Problemi simili da ricerca Web

Condividi

v^{2}-35-2v=0
Sottrai 2v da entrambi i lati.
v^{2}-2v-35=0
Ridisponi il polinomio per convertirlo nel formato standard. Disponi i termini in ordine dalla potenza massima a quella minima.
a+b=-2 ab=-35
Per risolvere l'equazione, il fattore v^{2}-2v-35 utilizzando la formula v^{2}+\left(a+b\right)v+ab=\left(v+a\right)\left(v+b\right). Per trovare a e b, configurare un sistema da risolvere.
1,-35 5,-7
Poiché ab è negativo, a e b hanno i segni opposti. Poiché a+b è negativo, il numero negativo ha un valore assoluto maggiore del positivo. Elenca tutte le coppie di numeri interi di questo tipo che danno come prodotto -35.
1-35=-34 5-7=-2
Calcola la somma di ogni coppia.
a=-7 b=5
La soluzione è la coppia che restituisce -2 come somma.
\left(v-7\right)\left(v+5\right)
Riscrivi scomposte espressione \left(v+a\right)\left(v+b\right) con i valori ottenuti.
v=7 v=-5
Per trovare soluzioni di equazione, risolvere v-7=0 e v+5=0.
v^{2}-35-2v=0
Sottrai 2v da entrambi i lati.
v^{2}-2v-35=0
Ridisponi il polinomio per convertirlo nel formato standard. Disponi i termini in ordine dalla potenza massima a quella minima.
a+b=-2 ab=1\left(-35\right)=-35
Per risolvere l'equazione, fattorizzare il lato sinistro raggruppandolo. Per prima cosa, è necessario riscrivere il lato sinistro come v^{2}+av+bv-35. Per trovare a e b, configurare un sistema da risolvere.
1,-35 5,-7
Poiché ab è negativo, a e b hanno i segni opposti. Poiché a+b è negativo, il numero negativo ha un valore assoluto maggiore del positivo. Elenca tutte le coppie di numeri interi di questo tipo che danno come prodotto -35.
1-35=-34 5-7=-2
Calcola la somma di ogni coppia.
a=-7 b=5
La soluzione è la coppia che restituisce -2 come somma.
\left(v^{2}-7v\right)+\left(5v-35\right)
Riscrivi v^{2}-2v-35 come \left(v^{2}-7v\right)+\left(5v-35\right).
v\left(v-7\right)+5\left(v-7\right)
Fattori in v nel primo e 5 nel secondo gruppo.
\left(v-7\right)\left(v+5\right)
Fattorizza il termine comune v-7 tramite la proprietà distributiva.
v=7 v=-5
Per trovare soluzioni di equazione, risolvere v-7=0 e v+5=0.
v^{2}-35-2v=0
Sottrai 2v da entrambi i lati.
v^{2}-2v-35=0
Tutte le equazioni nel formato ax^{2}+bx+c=0 possono essere risolti usando la formula risolutiva per equazioni di secondo grado: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La formula risolutiva per equazioni di secondo grado fornisce due soluzioni, una quando ± è un'addizione e l'altra quando è una sottrazione.
v=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-35\right)}}{2}
Questa equazione è nel formato standard: ax^{2}+bx+c=0. Sostituisci 1 a a, -2 a b e -35 a c nella formula risolutiva per equazioni di secondo grado \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
v=\frac{-\left(-2\right)±\sqrt{4-4\left(-35\right)}}{2}
Eleva -2 al quadrato.
v=\frac{-\left(-2\right)±\sqrt{4+140}}{2}
Moltiplica -4 per -35.
v=\frac{-\left(-2\right)±\sqrt{144}}{2}
Aggiungi 4 a 140.
v=\frac{-\left(-2\right)±12}{2}
Calcola la radice quadrata di 144.
v=\frac{2±12}{2}
L'opposto di -2 è 2.
v=\frac{14}{2}
Ora risolvi l'equazione v=\frac{2±12}{2} quando ± è più. Aggiungi 2 a 12.
v=7
Dividi 14 per 2.
v=-\frac{10}{2}
Ora risolvi l'equazione v=\frac{2±12}{2} quando ± è meno. Sottrai 12 da 2.
v=-5
Dividi -10 per 2.
v=7 v=-5
L'equazione è stata risolta.
v^{2}-35-2v=0
Sottrai 2v da entrambi i lati.
v^{2}-2v=35
Aggiungi 35 a entrambi i lati. Qualsiasi valore sommato a zero restituisce se stesso.
v^{2}-2v+1=35+1
Dividi -2, il coefficiente del termine x, per 2 per ottenere -1. Quindi aggiungi il quadrato di -1 a entrambi i lati dell'equazione. Con questo passaggio, il lato sinistro dell'equazione diventa un quadrato perfetto.
v^{2}-2v+1=36
Aggiungi 35 a 1.
\left(v-1\right)^{2}=36
Fattore v^{2}-2v+1. In generale, quando x^{2}+bx+c è un quadrato perfetto, può sempre essere scomplicato come \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(v-1\right)^{2}}=\sqrt{36}
Calcola la radice quadrata di entrambi i lati dell'equazione.
v-1=6 v-1=-6
Semplifica.
v=7 v=-5
Aggiungi 1 a entrambi i lati dell'equazione.