Trova A (soluzione complessa)
\left\{\begin{matrix}A=-\frac{-x^{3}+2x-u}{3xy}\text{, }&y\neq 0\text{ and }x\neq 0\\A\in \mathrm{C}\text{, }&\left(u=0\text{ and }x=0\right)\text{ or }\left(u=x\left(2-x^{2}\right)\text{ and }y=0\right)\end{matrix}\right,
Trova A
\left\{\begin{matrix}A=-\frac{-x^{3}+2x-u}{3xy}\text{, }&y\neq 0\text{ and }x\neq 0\\A\in \mathrm{R}\text{, }&\left(u=0\text{ and }x=0\right)\text{ or }\left(u=x\left(2-x^{2}\right)\text{ and }y=0\right)\end{matrix}\right,
Trova u
u=-x\left(x^{2}-3Ay-2\right)
Grafico
Condividi
Copiato negli Appunti
2x-x^{3}+3xyA=u
Scambia i lati in modo che i termini variabili si trovino sul lato sinistro.
-x^{3}+3xyA=u-2x
Sottrai 2x da entrambi i lati.
3xyA=u-2x+x^{3}
Aggiungi x^{3} a entrambi i lati.
3xyA=x^{3}-2x+u
L'equazione è in formato standard.
\frac{3xyA}{3xy}=\frac{x^{3}-2x+u}{3xy}
Dividi entrambi i lati per 3xy.
A=\frac{x^{3}-2x+u}{3xy}
La divisione per 3xy annulla la moltiplicazione per 3xy.
2x-x^{3}+3xyA=u
Scambia i lati in modo che i termini variabili si trovino sul lato sinistro.
-x^{3}+3xyA=u-2x
Sottrai 2x da entrambi i lati.
3xyA=u-2x+x^{3}
Aggiungi x^{3} a entrambi i lati.
3xyA=x^{3}-2x+u
L'equazione è in formato standard.
\frac{3xyA}{3xy}=\frac{x^{3}-2x+u}{3xy}
Dividi entrambi i lati per 3xy.
A=\frac{x^{3}-2x+u}{3xy}
La divisione per 3xy annulla la moltiplicazione per 3xy.
Esempi
Equazione quadratica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equazione lineare
y = 3x + 4
Aritmetica
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equazione simultanea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenziazione
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazione
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}