Trova a (soluzione complessa)
\left\{\begin{matrix}a=b-\frac{r}{m}\text{, }&m\neq 0\\a\in \mathrm{C}\text{, }&r=0\text{ and }m=0\end{matrix}\right,
Trova b (soluzione complessa)
\left\{\begin{matrix}b=a+\frac{r}{m}\text{, }&m\neq 0\\b\in \mathrm{C}\text{, }&r=0\text{ and }m=0\end{matrix}\right,
Trova a
\left\{\begin{matrix}a=b-\frac{r}{m}\text{, }&m\neq 0\\a\in \mathrm{R}\text{, }&r=0\text{ and }m=0\end{matrix}\right,
Trova b
\left\{\begin{matrix}b=a+\frac{r}{m}\text{, }&m\neq 0\\b\in \mathrm{R}\text{, }&r=0\text{ and }m=0\end{matrix}\right,
Grafico
Condividi
Copiato negli Appunti
r=bm-am
Usa la proprietà distributiva per moltiplicare b-a per m.
bm-am=r
Scambia i lati in modo che i termini variabili si trovino sul lato sinistro.
-am=r-bm
Sottrai bm da entrambi i lati.
\left(-m\right)a=r-bm
L'equazione è in formato standard.
\frac{\left(-m\right)a}{-m}=\frac{r-bm}{-m}
Dividi entrambi i lati per -m.
a=\frac{r-bm}{-m}
La divisione per -m annulla la moltiplicazione per -m.
a=b-\frac{r}{m}
Dividi r-bm per -m.
r=bm-am
Usa la proprietà distributiva per moltiplicare b-a per m.
bm-am=r
Scambia i lati in modo che i termini variabili si trovino sul lato sinistro.
bm=r+am
Aggiungi am a entrambi i lati.
mb=am+r
L'equazione è in formato standard.
\frac{mb}{m}=\frac{am+r}{m}
Dividi entrambi i lati per m.
b=\frac{am+r}{m}
La divisione per m annulla la moltiplicazione per m.
b=a+\frac{r}{m}
Dividi r+ma per m.
r=bm-am
Usa la proprietà distributiva per moltiplicare b-a per m.
bm-am=r
Scambia i lati in modo che i termini variabili si trovino sul lato sinistro.
-am=r-bm
Sottrai bm da entrambi i lati.
\left(-m\right)a=r-bm
L'equazione è in formato standard.
\frac{\left(-m\right)a}{-m}=\frac{r-bm}{-m}
Dividi entrambi i lati per -m.
a=\frac{r-bm}{-m}
La divisione per -m annulla la moltiplicazione per -m.
a=b-\frac{r}{m}
Dividi r-bm per -m.
r=bm-am
Usa la proprietà distributiva per moltiplicare b-a per m.
bm-am=r
Scambia i lati in modo che i termini variabili si trovino sul lato sinistro.
bm=r+am
Aggiungi am a entrambi i lati.
mb=am+r
L'equazione è in formato standard.
\frac{mb}{m}=\frac{am+r}{m}
Dividi entrambi i lati per m.
b=\frac{am+r}{m}
La divisione per m annulla la moltiplicazione per m.
b=a+\frac{r}{m}
Dividi r+ma per m.
Esempi
Equazione quadratica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equazione lineare
y = 3x + 4
Aritmetica
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equazione simultanea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenziazione
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazione
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}