Salta al contenuto principale
Scomponi in fattori
Tick mark Image
Calcola
Tick mark Image
Grafico

Problemi simili da ricerca Web

Condividi

a+b=-8 ab=1\times 7=7
Fattorizza l'espressione raggruppandola. Per prima cosa, è necessario riscrivere l'espressione come x^{2}+ax+bx+7. Per trovare a e b, configurare un sistema da risolvere.
a=-7 b=-1
Poiché ab è positivo, a e b hanno lo stesso segno. Poiché a+b è negativo, a e b sono entrambi negativi. L'unica coppia di questo tipo è la soluzione di sistema.
\left(x^{2}-7x\right)+\left(-x+7\right)
Riscrivi x^{2}-8x+7 come \left(x^{2}-7x\right)+\left(-x+7\right).
x\left(x-7\right)-\left(x-7\right)
Fattorizza x nel primo e -1 nel secondo gruppo.
\left(x-7\right)\left(x-1\right)
Fattorizzare il termine comune x-7 usando la proprietà distributiva.
x^{2}-8x+7=0
Il polinomio quadratico può essere scomposto in fattori utilizzando la trasformazione ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), dove x_{1} e x_{2} sono le soluzioni dell'equazione quadratica ax^{2}+bx+c=0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 7}}{2}
Tutte le equazioni nel formato ax^{2}+bx+c=0 possono essere risolti usando la formula risolutiva per equazioni di secondo grado: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La formula risolutiva per equazioni di secondo grado fornisce due soluzioni, una quando ± è un'addizione e l'altra quando è una sottrazione.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 7}}{2}
Eleva -8 al quadrato.
x=\frac{-\left(-8\right)±\sqrt{64-28}}{2}
Moltiplica -4 per 7.
x=\frac{-\left(-8\right)±\sqrt{36}}{2}
Aggiungi 64 a -28.
x=\frac{-\left(-8\right)±6}{2}
Calcola la radice quadrata di 36.
x=\frac{8±6}{2}
L'opposto di -8 è 8.
x=\frac{14}{2}
Ora risolvi l'equazione x=\frac{8±6}{2} quando ± è più. Aggiungi 8 a 6.
x=7
Dividi 14 per 2.
x=\frac{2}{2}
Ora risolvi l'equazione x=\frac{8±6}{2} quando ± è meno. Sottrai 6 da 8.
x=1
Dividi 2 per 2.
x^{2}-8x+7=\left(x-7\right)\left(x-1\right)
Scomponi in fattori l'espressione originale usando ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Sostituisci x_{1} con 7 e x_{2} con 1.