Scomponi in fattori
-2\left(x-5\right)\left(x+2\right)
Calcola
-2\left(x-5\right)\left(x+2\right)
Grafico
Condividi
Copiato negli Appunti
2\left(3x-x^{2}+10\right)
Scomponi 2 in fattori.
-x^{2}+3x+10
Considera 3x-x^{2}+10. Ridisponi il polinomio per convertirlo nel formato standard. Disponi i termini in ordine dalla potenza massima a quella minima.
a+b=3 ab=-10=-10
Fattorizza l'espressione raggruppandola. Per prima cosa, è necessario riscrivere l'espressione come -x^{2}+ax+bx+10. Per trovare a e b, configurare un sistema da risolvere.
-1,10 -2,5
Poiché ab è negativo, a e b hanno i segni opposti. Poiché a+b è positivo, il numero positivo ha un valore assoluto maggiore di quello negativo. Elenca tutte le coppie di numeri interi di questo tipo che danno come prodotto -10.
-1+10=9 -2+5=3
Calcola la somma di ogni coppia.
a=5 b=-2
La soluzione è la coppia che restituisce 3 come somma.
\left(-x^{2}+5x\right)+\left(-2x+10\right)
Riscrivi -x^{2}+3x+10 come \left(-x^{2}+5x\right)+\left(-2x+10\right).
-x\left(x-5\right)-2\left(x-5\right)
Fattori in -x nel primo e -2 nel secondo gruppo.
\left(x-5\right)\left(-x-2\right)
Fattorizza il termine comune x-5 tramite la proprietà distributiva.
2\left(x-5\right)\left(-x-2\right)
Riscrivi l'espressione fattorizzata completa.
-2x^{2}+6x+20=0
Il polinomio quadratico può essere scomposto in fattori utilizzando la trasformazione ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), dove x_{1} e x_{2} sono le soluzioni dell'equazione quadratica ax^{2}+bx+c=0.
x=\frac{-6±\sqrt{6^{2}-4\left(-2\right)\times 20}}{2\left(-2\right)}
Tutte le equazioni nel formato ax^{2}+bx+c=0 possono essere risolti usando la formula risolutiva per equazioni di secondo grado: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La formula risolutiva per equazioni di secondo grado fornisce due soluzioni, una quando ± è un'addizione e l'altra quando è una sottrazione.
x=\frac{-6±\sqrt{36-4\left(-2\right)\times 20}}{2\left(-2\right)}
Eleva 6 al quadrato.
x=\frac{-6±\sqrt{36+8\times 20}}{2\left(-2\right)}
Moltiplica -4 per -2.
x=\frac{-6±\sqrt{36+160}}{2\left(-2\right)}
Moltiplica 8 per 20.
x=\frac{-6±\sqrt{196}}{2\left(-2\right)}
Aggiungi 36 a 160.
x=\frac{-6±14}{2\left(-2\right)}
Calcola la radice quadrata di 196.
x=\frac{-6±14}{-4}
Moltiplica 2 per -2.
x=\frac{8}{-4}
Ora risolvi l'equazione x=\frac{-6±14}{-4} quando ± è più. Aggiungi -6 a 14.
x=-2
Dividi 8 per -4.
x=-\frac{20}{-4}
Ora risolvi l'equazione x=\frac{-6±14}{-4} quando ± è meno. Sottrai 14 da -6.
x=5
Dividi -20 per -4.
-2x^{2}+6x+20=-2\left(x-\left(-2\right)\right)\left(x-5\right)
Scomponi in fattori l'espressione originale usando ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Sostituisci x_{1} con -2 e x_{2} con 5.
-2x^{2}+6x+20=-2\left(x+2\right)\left(x-5\right)
Semplifica tutte le espressioni del modulo p-\left(-q\right) in p+q.
Esempi
Equazione quadratica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equazione lineare
y = 3x + 4
Aritmetica
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equazione simultanea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenziazione
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazione
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}