Trova f (soluzione complessa)
f=-\frac{x}{8-x^{2}}
x\neq 0\text{ and }x\neq -2\sqrt{2}\text{ and }x\neq 2\sqrt{2}
Trova f
f=-\frac{x}{8-x^{2}}
x\neq 0\text{ and }|x|\neq 2\sqrt{2}
Trova x
x=-\frac{\sqrt{32f^{2}+1}-1}{2f}
x=\frac{\sqrt{32f^{2}+1}+1}{2f}\text{, }f\neq 0
Grafico
Condividi
Copiato negli Appunti
\frac{1}{f}x=x^{2}-8
Riordina i termini.
1x=fx^{2}+f\left(-8\right)
La variabile f non può essere uguale a 0 perché la divisione per zero non è definita. Moltiplica entrambi i lati dell'equazione per f.
fx^{2}+f\left(-8\right)=1x
Scambia i lati in modo che i termini variabili si trovino sul lato sinistro.
fx^{2}-8f=x
Riordina i termini.
\left(x^{2}-8\right)f=x
Combina tutti i termini contenenti f.
\frac{\left(x^{2}-8\right)f}{x^{2}-8}=\frac{x}{x^{2}-8}
Dividi entrambi i lati per x^{2}-8.
f=\frac{x}{x^{2}-8}
La divisione per x^{2}-8 annulla la moltiplicazione per x^{2}-8.
f=\frac{x}{x^{2}-8}\text{, }f\neq 0
La variabile f non può essere uguale a 0.
\frac{1}{f}x=x^{2}-8
Riordina i termini.
1x=fx^{2}+f\left(-8\right)
La variabile f non può essere uguale a 0 perché la divisione per zero non è definita. Moltiplica entrambi i lati dell'equazione per f.
fx^{2}+f\left(-8\right)=1x
Scambia i lati in modo che i termini variabili si trovino sul lato sinistro.
fx^{2}-8f=x
Riordina i termini.
\left(x^{2}-8\right)f=x
Combina tutti i termini contenenti f.
\frac{\left(x^{2}-8\right)f}{x^{2}-8}=\frac{x}{x^{2}-8}
Dividi entrambi i lati per x^{2}-8.
f=\frac{x}{x^{2}-8}
La divisione per x^{2}-8 annulla la moltiplicazione per x^{2}-8.
f=\frac{x}{x^{2}-8}\text{, }f\neq 0
La variabile f non può essere uguale a 0.
Esempi
Equazione quadratica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equazione lineare
y = 3x + 4
Aritmetica
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equazione simultanea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenziazione
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazione
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}