Scomponi in fattori
-\left(A-2\right)\left(A+1\right)
Calcola
-\left(A-2\right)\left(A+1\right)
Condividi
Copiato negli Appunti
-A^{2}+A+2
Ridisponi il polinomio per convertirlo nel formato standard. Disponi i termini in ordine dalla potenza massima a quella minima.
a+b=1 ab=-2=-2
Fattorizza l'espressione raggruppandola. Per prima cosa, è necessario riscrivere l'espressione come -A^{2}+aA+bA+2. Per trovare a e b, configurare un sistema da risolvere.
a=2 b=-1
Poiché ab è negativo, a e b hanno i segni opposti. Poiché a+b è positivo, il numero positivo ha un valore assoluto maggiore di quello negativo. L'unica coppia di questo tipo è la soluzione di sistema.
\left(-A^{2}+2A\right)+\left(-A+2\right)
Riscrivi -A^{2}+A+2 come \left(-A^{2}+2A\right)+\left(-A+2\right).
-A\left(A-2\right)-\left(A-2\right)
Fattori in -A nel primo e -1 nel secondo gruppo.
\left(A-2\right)\left(-A-1\right)
Fattorizza il termine comune A-2 tramite la proprietà distributiva.
-A^{2}+A+2=0
Il polinomio quadratico può essere scomposto in fattori utilizzando la trasformazione ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), dove x_{1} e x_{2} sono le soluzioni dell'equazione quadratica ax^{2}+bx+c=0.
A=\frac{-1±\sqrt{1^{2}-4\left(-1\right)\times 2}}{2\left(-1\right)}
Tutte le equazioni nel formato ax^{2}+bx+c=0 possono essere risolti usando la formula risolutiva per equazioni di secondo grado: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La formula risolutiva per equazioni di secondo grado fornisce due soluzioni, una quando ± è un'addizione e l'altra quando è una sottrazione.
A=\frac{-1±\sqrt{1-4\left(-1\right)\times 2}}{2\left(-1\right)}
Eleva 1 al quadrato.
A=\frac{-1±\sqrt{1+4\times 2}}{2\left(-1\right)}
Moltiplica -4 per -1.
A=\frac{-1±\sqrt{1+8}}{2\left(-1\right)}
Moltiplica 4 per 2.
A=\frac{-1±\sqrt{9}}{2\left(-1\right)}
Aggiungi 1 a 8.
A=\frac{-1±3}{2\left(-1\right)}
Calcola la radice quadrata di 9.
A=\frac{-1±3}{-2}
Moltiplica 2 per -1.
A=\frac{2}{-2}
Ora risolvi l'equazione A=\frac{-1±3}{-2} quando ± è più. Aggiungi -1 a 3.
A=-1
Dividi 2 per -2.
A=-\frac{4}{-2}
Ora risolvi l'equazione A=\frac{-1±3}{-2} quando ± è meno. Sottrai 3 da -1.
A=2
Dividi -4 per -2.
-A^{2}+A+2=-\left(A-\left(-1\right)\right)\left(A-2\right)
Scomponi in fattori l'espressione originale usando ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Sostituisci x_{1} con -1 e x_{2} con 2.
-A^{2}+A+2=-\left(A+1\right)\left(A-2\right)
Semplifica tutte le espressioni del modulo p-\left(-q\right) in p+q.
Esempi
Equazione quadratica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equazione lineare
y = 3x + 4
Aritmetica
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equazione simultanea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenziazione
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazione
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}