Trova x
x = \frac{\sqrt{673} + 1}{12} \approx 2,245186962
x=\frac{1-\sqrt{673}}{12}\approx -2,078520295
Grafico
Condividi
Copiato negli Appunti
6x^{2}-x=28
Sottrai x da entrambi i lati.
6x^{2}-x-28=0
Sottrai 28 da entrambi i lati.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 6\left(-28\right)}}{2\times 6}
Questa equazione è nel formato standard: ax^{2}+bx+c=0. Sostituisci 6 a a, -1 a b e -28 a c nella formula risolutiva per equazioni di secondo grado \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-24\left(-28\right)}}{2\times 6}
Moltiplica -4 per 6.
x=\frac{-\left(-1\right)±\sqrt{1+672}}{2\times 6}
Moltiplica -24 per -28.
x=\frac{-\left(-1\right)±\sqrt{673}}{2\times 6}
Aggiungi 1 a 672.
x=\frac{1±\sqrt{673}}{2\times 6}
L'opposto di -1 è 1.
x=\frac{1±\sqrt{673}}{12}
Moltiplica 2 per 6.
x=\frac{\sqrt{673}+1}{12}
Ora risolvi l'equazione x=\frac{1±\sqrt{673}}{12} quando ± è più. Aggiungi 1 a \sqrt{673}.
x=\frac{1-\sqrt{673}}{12}
Ora risolvi l'equazione x=\frac{1±\sqrt{673}}{12} quando ± è meno. Sottrai \sqrt{673} da 1.
x=\frac{\sqrt{673}+1}{12} x=\frac{1-\sqrt{673}}{12}
L'equazione è stata risolta.
6x^{2}-x=28
Sottrai x da entrambi i lati.
\frac{6x^{2}-x}{6}=\frac{28}{6}
Dividi entrambi i lati per 6.
x^{2}-\frac{1}{6}x=\frac{28}{6}
La divisione per 6 annulla la moltiplicazione per 6.
x^{2}-\frac{1}{6}x=\frac{14}{3}
Riduci la frazione \frac{28}{6} ai minimi termini estraendo e annullando 2.
x^{2}-\frac{1}{6}x+\left(-\frac{1}{12}\right)^{2}=\frac{14}{3}+\left(-\frac{1}{12}\right)^{2}
Dividi -\frac{1}{6}, il coefficiente del termine x, per 2 per ottenere -\frac{1}{12}. Quindi aggiungi il quadrato di -\frac{1}{12} a entrambi i lati dell'equazione. Con questo passaggio, il lato sinistro dell'equazione diventa un quadrato perfetto.
x^{2}-\frac{1}{6}x+\frac{1}{144}=\frac{14}{3}+\frac{1}{144}
Eleva -\frac{1}{12} al quadrato elevando al quadrato sia il numeratore che il denominatore della frazione.
x^{2}-\frac{1}{6}x+\frac{1}{144}=\frac{673}{144}
Aggiungi \frac{14}{3} a \frac{1}{144} trovando un denominatore comune e sommando i numeratori, quindi riduci la frazione ai minimi termini, se possibile.
\left(x-\frac{1}{12}\right)^{2}=\frac{673}{144}
Fattore x^{2}-\frac{1}{6}x+\frac{1}{144}. In generale, quando x^{2}+bx+c è un quadrato perfetto, può sempre essere scomplicato come \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{12}\right)^{2}}=\sqrt{\frac{673}{144}}
Calcola la radice quadrata di entrambi i lati dell'equazione.
x-\frac{1}{12}=\frac{\sqrt{673}}{12} x-\frac{1}{12}=-\frac{\sqrt{673}}{12}
Semplifica.
x=\frac{\sqrt{673}+1}{12} x=\frac{1-\sqrt{673}}{12}
Aggiungi \frac{1}{12} a entrambi i lati dell'equazione.
Esempi
Equazione quadratica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equazione lineare
y = 3x + 4
Aritmetica
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equazione simultanea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenziazione
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazione
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}