Salta al contenuto principale
Trova x
Tick mark Image
Grafico

Problemi simili da ricerca Web

Condividi

5x^{2}+7x-4=0
Tutte le equazioni nel formato ax^{2}+bx+c=0 possono essere risolti usando la formula risolutiva per equazioni di secondo grado: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La formula risolutiva per equazioni di secondo grado fornisce due soluzioni, una quando ± è un'addizione e l'altra quando è una sottrazione.
x=\frac{-7±\sqrt{7^{2}-4\times 5\left(-4\right)}}{2\times 5}
Questa equazione è nel formato standard: ax^{2}+bx+c=0. Sostituisci 5 a a, 7 a b e -4 a c nella formula risolutiva per equazioni di secondo grado \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\times 5\left(-4\right)}}{2\times 5}
Eleva 7 al quadrato.
x=\frac{-7±\sqrt{49-20\left(-4\right)}}{2\times 5}
Moltiplica -4 per 5.
x=\frac{-7±\sqrt{49+80}}{2\times 5}
Moltiplica -20 per -4.
x=\frac{-7±\sqrt{129}}{2\times 5}
Aggiungi 49 a 80.
x=\frac{-7±\sqrt{129}}{10}
Moltiplica 2 per 5.
x=\frac{\sqrt{129}-7}{10}
Ora risolvi l'equazione x=\frac{-7±\sqrt{129}}{10} quando ± è più. Aggiungi -7 a \sqrt{129}.
x=\frac{-\sqrt{129}-7}{10}
Ora risolvi l'equazione x=\frac{-7±\sqrt{129}}{10} quando ± è meno. Sottrai \sqrt{129} da -7.
x=\frac{\sqrt{129}-7}{10} x=\frac{-\sqrt{129}-7}{10}
L'equazione è stata risolta.
5x^{2}+7x-4=0
Le equazioni di secondo grado come questa possono essere risolte completando il quadrato. Per completare il quadrato, l'equazione deve essere prima convertita nel formato x^{2}+bx=c.
5x^{2}+7x-4-\left(-4\right)=-\left(-4\right)
Aggiungi 4 a entrambi i lati dell'equazione.
5x^{2}+7x=-\left(-4\right)
Sottraendo -4 da se stesso rimane 0.
5x^{2}+7x=4
Sottrai -4 da 0.
\frac{5x^{2}+7x}{5}=\frac{4}{5}
Dividi entrambi i lati per 5.
x^{2}+\frac{7}{5}x=\frac{4}{5}
La divisione per 5 annulla la moltiplicazione per 5.
x^{2}+\frac{7}{5}x+\left(\frac{7}{10}\right)^{2}=\frac{4}{5}+\left(\frac{7}{10}\right)^{2}
Dividi \frac{7}{5}, il coefficiente del termine x, per 2 per ottenere \frac{7}{10}. Quindi aggiungi il quadrato di \frac{7}{10} a entrambi i lati dell'equazione. Con questo passaggio, il lato sinistro dell'equazione diventa un quadrato perfetto.
x^{2}+\frac{7}{5}x+\frac{49}{100}=\frac{4}{5}+\frac{49}{100}
Eleva \frac{7}{10} al quadrato elevando al quadrato sia il numeratore che il denominatore della frazione.
x^{2}+\frac{7}{5}x+\frac{49}{100}=\frac{129}{100}
Aggiungi \frac{4}{5} a \frac{49}{100} trovando un denominatore comune e sommando i numeratori, quindi riduci la frazione ai minimi termini, se possibile.
\left(x+\frac{7}{10}\right)^{2}=\frac{129}{100}
Fattore x^{2}+\frac{7}{5}x+\frac{49}{100}. In generale, quando x^{2}+bx+c è un quadrato perfetto, può sempre essere scomplicato come \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{10}\right)^{2}}=\sqrt{\frac{129}{100}}
Calcola la radice quadrata di entrambi i lati dell'equazione.
x+\frac{7}{10}=\frac{\sqrt{129}}{10} x+\frac{7}{10}=-\frac{\sqrt{129}}{10}
Semplifica.
x=\frac{\sqrt{129}-7}{10} x=\frac{-\sqrt{129}-7}{10}
Sottrai \frac{7}{10} da entrambi i lati dell'equazione.