Salta al contenuto principale
Trova x
Tick mark Image
Grafico

Problemi simili da ricerca Web

Condividi

a+b=4 ab=4\times 1=4
Per risolvere l'equazione, fattorizzare il lato sinistro raggruppandolo. Per prima cosa, è necessario riscrivere il lato sinistro come 4x^{2}+ax+bx+1. Per trovare a e b, configurare un sistema da risolvere.
1,4 2,2
Poiché ab è positivo, a e b hanno lo stesso segno. Poiché a+b è positivo, a e b sono entrambi positivi. Elenca tutte le coppie di numeri interi di questo tipo che danno come prodotto 4.
1+4=5 2+2=4
Calcola la somma di ogni coppia.
a=2 b=2
La soluzione è la coppia che restituisce 4 come somma.
\left(4x^{2}+2x\right)+\left(2x+1\right)
Riscrivi 4x^{2}+4x+1 come \left(4x^{2}+2x\right)+\left(2x+1\right).
2x\left(2x+1\right)+2x+1
Scomponi 2x in 4x^{2}+2x.
\left(2x+1\right)\left(2x+1\right)
Fattorizza il termine comune 2x+1 tramite la proprietà distributiva.
\left(2x+1\right)^{2}
Riscrivi come quadrato del binomio.
x=-\frac{1}{2}
Per trovare la soluzione dell'equazione, risolvi 2x+1=0.
4x^{2}+4x+1=0
Tutte le equazioni nel formato ax^{2}+bx+c=0 possono essere risolti usando la formula risolutiva per equazioni di secondo grado: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La formula risolutiva per equazioni di secondo grado fornisce due soluzioni, una quando ± è un'addizione e l'altra quando è una sottrazione.
x=\frac{-4±\sqrt{4^{2}-4\times 4}}{2\times 4}
Questa equazione è nel formato standard: ax^{2}+bx+c=0. Sostituisci 4 a a, 4 a b e 1 a c nella formula risolutiva per equazioni di secondo grado \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 4}}{2\times 4}
Eleva 4 al quadrato.
x=\frac{-4±\sqrt{16-16}}{2\times 4}
Moltiplica -4 per 4.
x=\frac{-4±\sqrt{0}}{2\times 4}
Aggiungi 16 a -16.
x=-\frac{4}{2\times 4}
Calcola la radice quadrata di 0.
x=-\frac{4}{8}
Moltiplica 2 per 4.
x=-\frac{1}{2}
Riduci la frazione \frac{-4}{8} ai minimi termini estraendo e annullando 4.
4x^{2}+4x+1=0
Le equazioni di secondo grado come questa possono essere risolte completando il quadrato. Per completare il quadrato, l'equazione deve essere prima convertita nel formato x^{2}+bx=c.
4x^{2}+4x+1-1=-1
Sottrai 1 da entrambi i lati dell'equazione.
4x^{2}+4x=-1
Sottraendo 1 da se stesso rimane 0.
\frac{4x^{2}+4x}{4}=-\frac{1}{4}
Dividi entrambi i lati per 4.
x^{2}+\frac{4}{4}x=-\frac{1}{4}
La divisione per 4 annulla la moltiplicazione per 4.
x^{2}+x=-\frac{1}{4}
Dividi 4 per 4.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=-\frac{1}{4}+\left(\frac{1}{2}\right)^{2}
Dividi 1, il coefficiente del termine x, per 2 per ottenere \frac{1}{2}. Quindi aggiungi il quadrato di \frac{1}{2} a entrambi i lati dell'equazione. Con questo passaggio, il lato sinistro dell'equazione diventa un quadrato perfetto.
x^{2}+x+\frac{1}{4}=\frac{-1+1}{4}
Eleva \frac{1}{2} al quadrato elevando al quadrato sia il numeratore che il denominatore della frazione.
x^{2}+x+\frac{1}{4}=0
Aggiungi -\frac{1}{4} a \frac{1}{4} trovando un denominatore comune e sommando i numeratori, quindi riduci la frazione ai minimi termini, se possibile.
\left(x+\frac{1}{2}\right)^{2}=0
Fattore x^{2}+x+\frac{1}{4}. In generale, quando x^{2}+bx+c è un quadrato perfetto, può sempre essere scomplicato come \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{0}
Calcola la radice quadrata di entrambi i lati dell'equazione.
x+\frac{1}{2}=0 x+\frac{1}{2}=0
Semplifica.
x=-\frac{1}{2} x=-\frac{1}{2}
Sottrai \frac{1}{2} da entrambi i lati dell'equazione.
x=-\frac{1}{2}
L'equazione è stata risolta. Le soluzioni sono uguali.