Scomponi in fattori
4\left(b-2\right)^{2}
Calcola
4\left(b-2\right)^{2}
Condividi
Copiato negli Appunti
4\left(b^{2}-4b+4\right)
Scomponi 4 in fattori.
\left(b-2\right)^{2}
Considera b^{2}-4b+4. Usa la formula quadrata perfetta, p^{2}-2pq+q^{2}=\left(p-q\right)^{2}, dove p=b e q=2.
4\left(b-2\right)^{2}
Riscrivi l'espressione fattorizzata completa.
factor(4b^{2}-16b+16)
Questo trinomio ha il formato di un quadrato del trinomio, magari moltiplicato per un divisore comune. I quadrati del trinomio possono essere scomposti in fattori trovando le radici quadrate dei termini iniziale e finale.
gcf(4,-16,16)=4
Prima trova il massimo comune divisore dei coefficienti.
4\left(b^{2}-4b+4\right)
Scomponi 4 in fattori.
\sqrt{4}=2
Trova la radice quadrata del termine finale 4.
4\left(b-2\right)^{2}
Il quadrato del trinomio è il quadrato del binomio che corrisponde alla somma o alla differenza delle radici quadrate dei termini iniziale e finale, con il segno determinato da quello del termine centrale del quadrato del trinomio.
4b^{2}-16b+16=0
Il polinomio quadratico può essere scomposto in fattori utilizzando la trasformazione ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), dove x_{1} e x_{2} sono le soluzioni dell'equazione quadratica ax^{2}+bx+c=0.
b=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 4\times 16}}{2\times 4}
Tutte le equazioni nel formato ax^{2}+bx+c=0 possono essere risolti usando la formula risolutiva per equazioni di secondo grado: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La formula risolutiva per equazioni di secondo grado fornisce due soluzioni, una quando ± è un'addizione e l'altra quando è una sottrazione.
b=\frac{-\left(-16\right)±\sqrt{256-4\times 4\times 16}}{2\times 4}
Eleva -16 al quadrato.
b=\frac{-\left(-16\right)±\sqrt{256-16\times 16}}{2\times 4}
Moltiplica -4 per 4.
b=\frac{-\left(-16\right)±\sqrt{256-256}}{2\times 4}
Moltiplica -16 per 16.
b=\frac{-\left(-16\right)±\sqrt{0}}{2\times 4}
Aggiungi 256 a -256.
b=\frac{-\left(-16\right)±0}{2\times 4}
Calcola la radice quadrata di 0.
b=\frac{16±0}{2\times 4}
L'opposto di -16 è 16.
b=\frac{16±0}{8}
Moltiplica 2 per 4.
4b^{2}-16b+16=4\left(b-2\right)\left(b-2\right)
Scomponi in fattori l'espressione originale usando ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Sostituisci x_{1} con 2 e x_{2} con 2.
Esempi
Equazione quadratica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equazione lineare
y = 3x + 4
Aritmetica
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equazione simultanea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenziazione
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazione
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}